These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 22907836)

  • 61. Hyperreflexia and enhanced ripple oscillations in the taurine-deficient mice.
    Mekawy N; Bendaoud M; Yachou Y; El Idrissi A
    Amino Acids; 2021 May; 53(5):701-712. PubMed ID: 33877450
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Insulin-like growth factor-2 regulates early neural and cardiovascular system development in zebrafish embryos.
    Hartnett L; Glynn C; Nolan CM; Grealy M; Byrnes L
    Int J Dev Biol; 2010; 54(4):573-83. PubMed ID: 19757379
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Taurine: an essential nutrient for the cat.
    Knopf K; Sturman JA; Armstrong M; Hayes KC
    J Nutr; 1978 May; 108(5):773-8. PubMed ID: 641594
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Zebrafish lipid droplets regulate embryonic ATP homeostasis to power early development.
    Dutta A; Sinha DK
    Open Biol; 2017 Jul; 7(7):. PubMed ID: 28679548
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sterol O-Acyltransferase 2 Contributes to the Yolk Cholesterol Trafficking during Zebrafish Embryogenesis.
    Chang NY; Chan YJ; Ding ST; Lee YH; HuangFu WC; Liu IH
    PLoS One; 2016; 11(12):e0167644. PubMed ID: 27936201
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Function of taurine and its synthesis-related genes in hypertonic regulation of Sinonovacula constricta.
    Yihua C; Min D; Zhiguo D; Yifeng L; Donghong N
    Comp Biochem Physiol A Mol Integr Physiol; 2024 Jan; 287():111536. PubMed ID: 37858705
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cysteinesulfinic acid decarboxylase activity in the mammalian nervous system: absence from axons.
    Sturman JA
    J Neurochem; 1981 Jan; 36(1):304-6. PubMed ID: 7193241
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biosynthesis of taurine and enhancement of decarboxylation of cysteine sulphinate and glutamate by the electrical stimulation of rat brain slices.
    Oja SS; Karvonen ML; Lähdesmäki P
    Brain Res; 1973 May; 55(1):173-8. PubMed ID: 4713187
    [No Abstract]   [Full Text] [Related]  

  • 69. Taurine synthesis, concentration, and bile salt conjugation in rat, guinea pig, and rabbit.
    Spaeth DG; Schneider DL; Sarett HP
    Proc Soc Exp Biol Med; 1974 Dec; 147(3):855-8. PubMed ID: 4445181
    [No Abstract]   [Full Text] [Related]  

  • 70. Development of taurine biosynthesizing system in cerebral cortical neurons in primary culture.
    Ohkuma S; Tomono S; Tanaka Y; Kuriyama K; Mukainaka T
    Int J Dev Neurosci; 1986; 4(4):383-95. PubMed ID: 3455598
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification of Taurine-Responsive Genes in Murine Liver Using the Cdo1-Null Mouse Model.
    Stipanuk MH; Jurkowska H; Niewiadomski J; Mazor KM; Roman HB; Hirschberger LL
    Adv Exp Med Biol; 2017; 975 Pt 1():475-495. PubMed ID: 28849476
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In vivo studies of cysteine metabolism. Use of D-cysteinesulfinate, a novel cysteinesulfinate decarboxylase inhibitor, to probe taurine and pyruvate synthesis.
    Weinstein CL; Haschemeyer RH; Griffith OW
    J Biol Chem; 1988 Nov; 263(32):16568-79. PubMed ID: 3182803
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Taurine biosynthesis enzyme cysteine sulfinate decarboxylase (CSD) from brain: the long and tricky trail to identification.
    Tappaz M; Almarghini K; Legay F; Remy A
    Neurochem Res; 1992 Sep; 17(9):849-59. PubMed ID: 1407273
    [No Abstract]   [Full Text] [Related]  

  • 74. The synthesis of taurine from sulfate. VI. Vitamin B6 deficiency and taurine synthesis in the rat.
    Martin WG; Truex RC; Tarka S; Gorby W; Hill L
    Proc Soc Exp Biol Med; 1974 Dec; 147(3):835-8. PubMed ID: 4445177
    [No Abstract]   [Full Text] [Related]  

  • 75. Characterization of cerebral cysteine sulfinic acid decarboxylase. Molecular parameters and inhibition studies.
    Heinämäki AA; Perämaa AK; Piha RS
    Acta Chem Scand B; 1982; 36(5):287-90. PubMed ID: 7124259
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effect of bile acid derivatives on taurine biosynthesis and extracellular slime production in encapsulated Staphylococcus aureus S-7.
    Ohtomo T; Yoshida K; San Clemente CL
    Infect Immun; 1981 Feb; 31(2):798-807. PubMed ID: 7216475
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A novel cysteine sulfinic Acid decarboxylase knock-out mouse: pathology of the kidney and lung in newborn pups.
    Gordon R; Park SY; Schuller-Levis G; Park E
    Adv Exp Med Biol; 2015; 803():17-28. PubMed ID: 25833484
    [No Abstract]   [Full Text] [Related]  

  • 78. A novel cysteine sulfinic Acid decarboxylase knock-out mouse: immune function.
    Park SY; Schuller-Levis G; Park E
    Adv Exp Med Biol; 2015; 803():89-98. PubMed ID: 25833490
    [No Abstract]   [Full Text] [Related]  

  • 79. Subcellular distribution of taurine and cysteine sulphinate decarboxylase activity in ox retina.
    Macaione S; Tucci G; De Luca G; Di Girorgio RM
    J Neurochem; 1976 Dec; 27(6):1411-5. PubMed ID: 1003216
    [No Abstract]   [Full Text] [Related]  

  • 80. Building biosynthetic schools: reviewing compartmentation of CNS taurine synthesis.
    Dominy J; Eller S; Dawson R
    Neurochem Res; 2004 Jan; 29(1):97-103. PubMed ID: 14992267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.