These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 22907957)

  • 1. Developing a reproducible non-line-of-sight experimental setup for testing wireless medical device coexistence utilizing ZigBee.
    LaSorte NJ; Rajab SA; Refai HH
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3221-9. PubMed ID: 22907957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the Likelihood of Wireless Coexistence Using Logistic Regression: Emphasis on Medical Devices.
    Al Kalaa MO; Seidman SJ; Refai HH
    IEEE Trans Electromagn Compat; 2018 Oct; 60(5):1546-1554. PubMed ID: 36248761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Challenge of Wireless Reliability and Coexistence.
    Berger HS
    Biomed Instrum Technol; 2016 Sep; 50(s6):38-46. PubMed ID: 27854501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Safe introduction of in-hospital wireless LAN.
    Hanada E; Hoshino Y; Kudou T
    Stud Health Technol Inform; 2004; 107(Pt 2):1426-9. PubMed ID: 15361050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless vital signs from a life-supporting medical device exposed to electromagnetic disturbance.
    Øyri K; Chávez-Santiago R; Støa S; Martinsen ØG; Balasingham I; Fosse E
    Minim Invasive Ther Allied Technol; 2014 Dec; 23(6):341-9. PubMed ID: 24976270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiofrequency identification and medical devices: the regulatory framework on electromagnetic compatibility. Part I: medical devices.
    Censi F; Mattei E; Triventi M; Bartolini P; Calcagnini G
    Expert Rev Med Devices; 2012 May; 9(3):283-8. PubMed ID: 22702259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of retroreflective transdermal optical wireless communication.
    Gil Y; Rotter N; Arnon S
    Appl Opt; 2012 Jun; 51(18):4232-9. PubMed ID: 22722303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling WLAN and WPAN Coexistence via Cross-Technology Communication.
    Kim S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless Coexistence Testing in the 5 GHz Band with LTE-LAA Signals.
    Al Kalaa MO; Seidman SJ
    IEEE Int Symp Electromagn Compat; 2019 Jul; 2019():437-442. PubMed ID: 35293201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wireless technologies for robotic endoscope in gastrointestinal tract.
    Gao P; Yan G; Wang Z; Liu H
    J Med Eng Technol; 2012 Jul; 36(5):242-50. PubMed ID: 22594607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 5 GHz Band LTE-LAA Signal Selection for Use as the Unintended Signal in ANSI C63.27 Wireless Coexistence Testing.
    Al Kalaa MO; Seidman SJ
    IEEE Trans Electromagn Compat; 2020 Aug; 62(4):1468-1476. PubMed ID: 35210654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Development of physiological monitors based on the Zigbee technology for hyperbaric oxygen chambers].
    Zheng JN; Wu BM; Lin JZ; Wang Q
    Zhongguo Yi Liao Qi Xie Za Zhi; 2008 May; 32(3):193-7. PubMed ID: 18754422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless design of a multisensor system for physical activity monitoring.
    Mo L; Liu S; Gao RX; John D; Staudenmayer JW; Freedson PS
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3230-7. PubMed ID: 23086196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing the 2.4 GHz Spectrum in a Hospital Environment: Modeling and Applicability to Coexistence Testing of Medical Devices.
    Al Kalaa MO; Balid W; Refai HH; LaSorte NJ; Seidman SJ; Bassen HI; Silberberg JL; Witters D
    IEEE Trans Electromagn Compat; 2017 Feb; 59(1):58-66. PubMed ID: 36249676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A distributed scheme to manage the dynamic coexistence of IEEE 802.15.4-based health-monitoring WBANs.
    Deylami MN; Jovanov E
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):327-34. PubMed ID: 24403431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic compatibility of WLAN adapters with life-supporting medical devices.
    Calcagnini G; Mattei E; Censi F; Triventi M; Lo Sterzo R; Marchetta E; Bartolini P
    Health Phys; 2011 May; 100(5):497-501. PubMed ID: 21451319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Key common determinants for adoption of wireless technology in healthcare for India and Pakistan: development of a conceptual model.
    Hafeez-Baig A; Gururajan R
    Stud Health Technol Inform; 2010; 160(Pt 1):342-6. PubMed ID: 20841705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Value of wireless personal digital assistants for practice: perceptions of advanced practice nurses.
    Garrett B; Klein G
    J Clin Nurs; 2008 Aug; 17(16):2146-54. PubMed ID: 18705736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary Salvage Survey of the Interference of Radiowaves Emitted by Smartphones on Medical Equipment.
    Takao H; Yeh YC; Arita H; Obatake T; Sakano T; Kurihara M; Matsuki A; Ishibashi T; Murayama Y
    Health Phys; 2016 Oct; 111(4):381-92. PubMed ID: 27575351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A power and data link for a wireless-implanted neural recording system.
    Rush AD; Troyk PR
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3255-62. PubMed ID: 22922687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.