These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22907973)

  • 1. A largely deformable surface type neural electrode array based on PDMS.
    Chou N; Yoo S; Kim S
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):544-53. PubMed ID: 22907973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term characterization of neural electrodes based on parylene-caulked polydimethylsiloxane substrate.
    Jeong J; Chou N; Kim S
    Biomed Microdevices; 2016 Jun; 18(3):42. PubMed ID: 27165102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A PDMS-based conical-well microelectrode array for surface stimulation and recording of neural tissues.
    Guo L; Meacham KW; Hochman S; DeWeerth SP
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2485-94. PubMed ID: 20550983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PDMS based multielectrode arrays for superior in-vitro retinal stimulation and recording.
    Biswas S; Sikdar D; Das D; Mahadevappa M; Das S
    Biomed Microdevices; 2017 Aug; 19(4):75. PubMed ID: 28842772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical characterization of neural electrodes based on PDMS-parylene C-PDMS sandwiched system.
    Henle C; Hassler C; Kohler F; Schuettler M; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():640-3. PubMed ID: 22254390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Annealing Effects of Parylene-Caulked Polydimethylsiloxane as a Substrate of Electrodes.
    Jeong J; Chou N; Lee G; Kim S
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent recordings of bladder afferents from multiple nerves using a microfabricated PDMS microchannel electrode array.
    Delivopoulos E; Chew DJ; Minev IR; Fawcett JW; Lacour SP
    Lab Chip; 2012 Jul; 12(14):2540-51. PubMed ID: 22569953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical characteristics of microelectrode designed for electrical stimulation.
    Cui H; Xie X; Xu S; Chan LLH; Hu Y
    Biomed Eng Online; 2019 Aug; 18(1):86. PubMed ID: 31370902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid PDMS-Parylene subdural multi-electrode array.
    Ochoa M; Wei P; Wolley AJ; Otto KJ; Ziaie B
    Biomed Microdevices; 2013 Jun; 15(3):437-43. PubMed ID: 23334754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-density, stretchable, all-solid-state microsupercapacitor arrays.
    Hong SY; Yoon J; Jin SW; Lim Y; Lee SJ; Zi G; Ha JS
    ACS Nano; 2014 Sep; 8(9):8844-55. PubMed ID: 25137479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lifetime assessment of atomic-layer-deposited Al2O3-Parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization.
    Minnikanti S; Diao G; Pancrazio JJ; Xie X; Rieth L; Solzbacher F; Peixoto N
    Acta Biomater; 2014 Feb; 10(2):960-7. PubMed ID: 24185000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing.
    Liang Guo ; Guvanasen GS; Xi Liu ; Tuthill C; Nichols TR; DeWeerth SP
    IEEE Trans Biomed Circuits Syst; 2013 Feb; 7(1):1-10. PubMed ID: 23853274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Al
    Caldwell R; Mandal H; Sharma R; Solzbacher F; Tathireddy P; Rieth L
    J Neural Eng; 2017 Aug; 14(4):046011. PubMed ID: 28351998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and fabrication of a multi-electrode array for spinal cord epidural stimulation.
    Chang CW; Lo YK; Gad P; Edgerton R; Liu W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6834-7. PubMed ID: 25571566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parylene-coated metal tracks for neural electrode arrays - fabrication approaches and improvements utilizing different laser systems.
    Kohler F; Schuettler M; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5130-3. PubMed ID: 23367083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling limitations of laser-fabricated nerve electrode arrays.
    Henle C; Schuettler M; Ordonez JS; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4208-11. PubMed ID: 19163640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation.
    Minev IR; Chew DJ; Delivopoulos E; Fawcett JW; Lacour SP
    J Neural Eng; 2012 Apr; 9(2):026005. PubMed ID: 22328617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PDMS-Parylene Adhesion Improvement via Ceramic Interlayers to Strengthen the Encapsulation of Active Neural Implants.
    Babaroud NB; Dekker R; Serdijn W; Giagka V
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3399-3402. PubMed ID: 33018733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Materials analyses and electrochemical impedance of implantable metal electrodes.
    Howlader MM; Ul Alam A; Sharma RP; Deen MJ
    Phys Chem Chem Phys; 2015 Apr; 17(15):10135-45. PubMed ID: 25790136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an intrafascicular neural interface for peripheral nerve implantation.
    Chou N; Kang Y; Kang HS; Yun JD; Chun W; Lee KJ; Moon H; Choi IK; Byun D; Song I; Moon DJ; Moon JH; Lee BH; Kim J; You SK; Kim S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():847-850. PubMed ID: 28813926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.