These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Induction of interleukin-1beta, tumour necrosis factor-alpha and apoptosis in mouse organs by amphotericin B is neutralized by conjugation with arabinogalactan. Falk R; Hacham M; Nyska A; Foley JF; Domb AJ; Polacheck I J Antimicrob Chemother; 2005 May; 55(5):713-20. PubMed ID: 15814605 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of novel water soluble amphotericin B-arabinogalactan conjugates. Ehrenfreund-Kleinman T; Azzam T; Falk R; Polacheck I; Golenser J; Domb AJ Biomaterials; 2002 Mar; 23(5):1327-35. PubMed ID: 11804288 [TBL] [Abstract][Full Text] [Related]
6. Arabinogalactan protein from Arachis hypogaea: role as carrier in drug-formulations. Parveen S; Gupta AD; Prasad R Int J Pharm; 2007 Mar; 333(1-2):79-86. PubMed ID: 17084048 [TBL] [Abstract][Full Text] [Related]
7. In vitro evaluation of antifungal and cytotoxic activities as also the therapeutic safety of the oxidized form of amphotericin B. Klimek K; Strubińska J; Czernel G; Ginalska G; Gagoś M Chem Biol Interact; 2016 Aug; 256():47-54. PubMed ID: 27350166 [TBL] [Abstract][Full Text] [Related]
9. Interaction of amphotericin B and its low toxic derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester, with fungal, mammalian and bacterial cells measured by the energy transfer method. Szlinder-Richert J; Cybulska B; Grzybowska J; Bolard J; Borowski E Farmaco; 2004 Apr; 59(4):289-96. PubMed ID: 15081346 [TBL] [Abstract][Full Text] [Related]
10. Comparative in vitro antifungal susceptibility activity of amphotericin B versus amphotericin B methyl ester against Candida albicans ocular isolates. Thanathanee O; Miller D; Ringel DM; Schaffner CP; Alfonso EC; O'Brien TP J Ocul Pharmacol Ther; 2012 Dec; 28(6):589-92. PubMed ID: 22788845 [TBL] [Abstract][Full Text] [Related]
11. Unique aggregation of conjugated amphotericin B and its interaction with lipid membranes. Kagan S; Ickowicz DE; Domb AJ; Dagan A; Polacheck I Med Mycol; 2017 Jun; 55(4):414-421. PubMed ID: 28339539 [TBL] [Abstract][Full Text] [Related]
12. Comparative in vitro and in vivo evaluation of N-D-ornithyl amphotericin B methyl ester, amphotericin B methyl ester, and amphotericin B. Parmegiani RM; Loebenberg D; Antonacci B; Yarosh-Tomaine T; Scupp R; Wright JJ; Chiu PJ; Miller GH Antimicrob Agents Chemother; 1987 Nov; 31(11):1756-60. PubMed ID: 3324961 [TBL] [Abstract][Full Text] [Related]
13. Silver Nanoparticles with High Loading Capacity of Amphotericin B: Characterization, Bactericidal and Antifungal Effects. Leonhard V; Alasino RV; Munoz A; Beltramo DM Curr Drug Deliv; 2018; 15(6):850-859. PubMed ID: 28925873 [TBL] [Abstract][Full Text] [Related]
15. Self-assembled amphotericin B-loaded polyglutamic acid nanoparticles: preparation, characterization and in vitro potential against Candida albicans. Zia Q; Khan AA; Swaleha Z; Owais M Int J Nanomedicine; 2015; 10():1769-90. PubMed ID: 25784804 [TBL] [Abstract][Full Text] [Related]
16. Enhanced antifungal effects of amphotericin B-TPGS-b-(PCL-ran-PGA) nanoparticles in vitro and in vivo. Tang X; Zhu H; Sun L; Hou W; Cai S; Zhang R; Liu F Int J Nanomedicine; 2014; 9():5403-13. PubMed ID: 25473279 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a Polyethylene Glycol-Amphotericin B Conjugate Loaded with Free AMB for Improved Antifungal Efficacy. Tan TR; Hoi KM; Zhang P; Ng SK PLoS One; 2016; 11(3):e0152112. PubMed ID: 27008086 [TBL] [Abstract][Full Text] [Related]
18. Influence of phospholipid/amphotericin B ratio and phospholipid type on in vitro renal cell toxicities and fungicidal activities of lipid-associated amphotericin B formulations. Joly V; Bolard J; Saint-Julien L; Carbon C; Yeni P Antimicrob Agents Chemother; 1992 Feb; 36(2):262-6. PubMed ID: 1605590 [TBL] [Abstract][Full Text] [Related]