BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 22908171)

  • 1. Mutagenesis of zinc ligand residue Cys221 reveals plasticity in the IMP-1 metallo-β-lactamase active site.
    Horton LB; Shanker S; Mikulski R; Brown NG; Phillips KJ; Lykissa E; Venkataram Prasad BV; Palzkill T
    Antimicrob Agents Chemother; 2012 Nov; 56(11):5667-77. PubMed ID: 22908171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating the Role of Residue 67 in IMP-Type Metallo-β-Lactamase Evolution.
    LaCuran AE; Pegg KM; Liu EM; Bethel CR; Ai N; Welsh WJ; Bonomo RA; Oelschlaeger P
    Antimicrob Agents Chemother; 2015 Dec; 59(12):7299-307. PubMed ID: 26369960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the functional contributions of Asn233 in metallo-β-lactamase IMP-1.
    Brown NG; Horton LB; Huang W; Vongpunsawad S; Palzkill T
    Antimicrob Agents Chemother; 2011 Dec; 55(12):5696-702. PubMed ID: 21896903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Difference in the Inhibitory Effect of Thiol Compounds and Demetallation Rates from the Zn(II) Active Site of Metallo-β-lactamases (IMP-1 and IMP-6) Associated with a Single Amino Acid Substitution.
    Yamaguchi Y; Kato K; Ichimaru Y; Uenosono Y; Tawara S; Ito R; Matsuse N; Wachino JI; Toma-Fukai S; Jin W; Arakawa Y; Otsuka M; Fujita M; Fukuishi N; Sugiura K; Imai M; Kurosaki H
    ACS Infect Dis; 2023 Jan; 9(1):65-78. PubMed ID: 36519431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broad antibiotic resistance profile of the subclass B3 metallo-β-lactamase GOB-1, a di-zinc enzyme.
    Horsfall LE; Izougarhane Y; Lassaux P; Selevsek N; Liénard BM; Poirel L; Kupper MB; Hoffmann KM; Frère JM; Galleni M; Bebrone C
    FEBS J; 2011 Apr; 278(8):1252-63. PubMed ID: 21299838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into the subclass B3 metallo-β-lactamase SMB-1 and the mode of inhibition by the common metallo-β-lactamase inhibitor mercaptoacetate.
    Wachino J; Yamaguchi Y; Mori S; Kurosaki H; Arakawa Y; Shibayama K
    Antimicrob Agents Chemother; 2013 Jan; 57(1):101-9. PubMed ID: 23070156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of the active site of a metallo-beta-lactamase proliferating in Japan.
    Haruta S; Yamaguchi H; Yamamoto ET; Eriguchi Y; Nukaga M; O'Hara K; Sawai T
    Antimicrob Agents Chemother; 2000 Sep; 44(9):2304-9. PubMed ID: 10952572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of the dizinc subclass B2 metallo-beta-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine site.
    Bebrone C; Delbrück H; Kupper MB; Schlömer P; Willmann C; Frère JM; Fischer R; Galleni M; Hoffmann KM
    Antimicrob Agents Chemother; 2009 Oct; 53(10):4464-71. PubMed ID: 19651913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of purified New Delhi metallo-β-lactamase-1.
    Thomas PW; Zheng M; Wu S; Guo H; Liu D; Xu D; Fast W
    Biochemistry; 2011 Nov; 50(46):10102-13. PubMed ID: 22029287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asp120Asn mutation impairs the catalytic activity of NDM-1 metallo-β-lactamase: experimental and computational study.
    Chen J; Chen H; Zhu T; Zhou D; Zhang F; Lao X; Zheng H
    Phys Chem Chem Phys; 2014 Apr; 16(14):6709-16. PubMed ID: 24584846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine β-Lactamases by Relieving Steric Strain.
    Stojanoski V; Adamski CJ; Hu L; Mehta SC; Sankaran B; Zwart P; Prasad BV; Palzkill T
    Biochemistry; 2016 May; 55(17):2479-90. PubMed ID: 27073009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into stereochemistry of a new IMP allelic variant (IMP-55) metallo-β-lactamase identified in a clinical strain of Acinetobacter baumannii.
    Shakibaie MR; Azizi O; Shahcheraghi F
    Infect Genet Evol; 2017 Jul; 51():118-126. PubMed ID: 28336429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the active-site residues asparagine 167 and lysine 161 of the IMP-1 metallo beta-lactamase.
    Haruta S; Yamamoto ET; Eriguchi Y; Sawai T
    FEMS Microbiol Lett; 2001 Apr; 197(1):85-9. PubMed ID: 11287151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor.
    Concha NO; Janson CA; Rowling P; Pearson S; Cheever CA; Clarke BP; Lewis C; Galleni M; Frère JM; Payne DJ; Bateson JH; Abdel-Meguid SS
    Biochemistry; 2000 Apr; 39(15):4288-98. PubMed ID: 10757977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal Structure of the Metallo-β-Lactamase GOB in the Periplasmic Dizinc Form Reveals an Unusual Metal Site.
    Morán-Barrio J; Lisa MN; Larrieux N; Drusin SI; Viale AM; Moreno DM; Buschiazzo A; Vila AJ
    Antimicrob Agents Chemother; 2016 Oct; 60(10):6013-22. PubMed ID: 27458232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the role of Met221 in the unusual metallo-β-lactamase GOB-18.
    Lisa MN; Morán-Barrio J; Guindón MF; Vila AJ
    Inorg Chem; 2012 Nov; 51(22):12419-25. PubMed ID: 23113650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the molecular determinants of substrate and inhibitor specificities in the Carbapenemase KPC-2: exploring the roles of Arg220 and Glu276.
    Papp-Wallace KM; Taracila MA; Smith KM; Xu Y; Bonomo RA
    Antimicrob Agents Chemother; 2012 Aug; 56(8):4428-38. PubMed ID: 22687511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of residues critical for metallo-beta-lactamase function by codon randomization and selection.
    Materon IC; Palzkill T
    Protein Sci; 2001 Dec; 10(12):2556-65. PubMed ID: 11714924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Noncanonical Metal Center Drives the Activity of the Sediminispirochaeta smaragdinae Metallo-β-lactamase SPS-1.
    Cheng Z; VanPelt J; Bergstrom A; Bethel C; Katko A; Miller C; Mason K; Cumming E; Zhang H; Kimble RL; Fullington S; Bretz SL; Nix JC; Bonomo RA; Tierney DL; Page RC; Crowder MW
    Biochemistry; 2018 Sep; 57(35):5218-5229. PubMed ID: 30106565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mono- and binuclear Zn2+-beta-lactamase. Role of the conserved cysteine in the catalytic mechanism.
    Paul-Soto R; Bauer R; Frère JM; Galleni M; Meyer-Klaucke W; Nolting H; Rossolini GM; de Seny D; Hernandez-Valladares M; Zeppezauer M; Adolph HW
    J Biol Chem; 1999 May; 274(19):13242-9. PubMed ID: 10224083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.