These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22908638)

  • 21. Cysteine-β-cyclodextrin enhanced phytoremediation of soil co-contaminated with phenanthrene and lead.
    Wang G; Wang Y; Hu S; Deng N; Wu F
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):10107-15. PubMed ID: 25687612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brassica juncea tested on urban soils moderately contaminated by lead: Origin of contamination and effect of chelates.
    Bouquet D; Braud A; Lebeau T
    Int J Phytoremediation; 2017 May; 19(5):425-430. PubMed ID: 27739899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergetic effects of DA-6/GA₃ with EDTA on plant growth, extraction and detoxification of Cd by Lolium perenne.
    He S; Wu Q; He Z
    Chemosphere; 2014 Dec; 117():132-8. PubMed ID: 24999226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of GA3 on Plant Physiological Properties, Extraction, Subcellular Distribution and Chemical Forms of Pb in Lolium perenne.
    He S; He Z; Wu Q; Wang L; Zhang X
    Int J Phytoremediation; 2015; 17(12):1153-9. PubMed ID: 25942519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil.
    Lambrechts T; Gustot Q; Couder E; Houben D; Iserentant A; Lutts S
    Chemosphere; 2011 Nov; 85(8):1290-8. PubMed ID: 21839490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EDTA-assisted phytoextraction of lead from lead-contaminated soils by Echinochloa crusgalli var. frumentacea.
    Baek KH; Kim HH; Bae B; Chang YY; Lee IS
    J Environ Biol; 2005 Jan; 26(1):151-4. PubMed ID: 16114477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.
    Muhammad D; Chen F; Zhao J; Zhang G; Wu F
    Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of organic and inorganic amendments for enhancing soil lead phytoextraction by wheat (Triticum aestivum L.).
    Saifullah ; Ghafoor A; Zia MH; Murtaza G; Waraich EA; Bibi S; Srivastava P
    Int J Phytoremediation; 2010 Sep; 12(7):633-49. PubMed ID: 21166273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: Results of a one-year field-scale experiment.
    Liang SX; Jin Y; Liu W; Li X; Shen SG; Ding L
    J Environ Manage; 2017 Apr; 190():170-175. PubMed ID: 28043023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils.
    Komárek M; Tlustos P; Száková J; Chrastný V; Ettler V
    Chemosphere; 2007 Mar; 67(4):640-51. PubMed ID: 17184814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EDTA-assisted Pb phytoextraction.
    Saifullah ; Meers E; Qadir M; de Caritat P; Tack FM; Du Laing G; Zia MH
    Chemosphere; 2009 Mar; 74(10):1279-91. PubMed ID: 19121533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Nano-Hydroxyapatite on the Metal Bioavailability, Plant Metal Accumulation and Root Exudates of Ryegrass for Phytoremediation in Lead-Polluted Soil.
    Ding L; Li J; Liu W; Zuo Q; Liang SX
    Int J Environ Res Public Health; 2017 May; 14(5):. PubMed ID: 28509844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lead uptake and translocation by willows in pot and field experiments.
    Zhivotovsky OP; Kuzovkina YA; Schulthess CP; Morris T; Pettinelli D
    Int J Phytoremediation; 2011 Sep; 13(8):731-49. PubMed ID: 21972515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS.
    Luo C; Shen Z; Li X
    Chemosphere; 2005 Mar; 59(1):1-11. PubMed ID: 15698638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter.
    López ML; Peralta-Videa JR; Benitez T; Gardea-Torresdey JL
    Chemosphere; 2005 Oct; 61(4):595-8. PubMed ID: 16202815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemically enhanced phytoextraction of risk elements from a contaminated agricultural soil using Zea mays and Triticum aestivum: performance and metal mobilization over a three year period.
    Neugschwandtner RW; Tlustos P; Komárek M; Száková J; Jakoubková L
    Int J Phytoremediation; 2012 Sep; 14(8):754-71. PubMed ID: 22908642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata.
    Du RJ; He EK; Tang YT; Hu PJ; Ying RR; Morel JL; Qiu RL
    Int J Phytoremediation; 2011; 13(10):1024-36. PubMed ID: 21972569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The improved phytoextraction of lead (Pb) and the growth of maize (Zeamays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations.
    Hadi F; Bano A; Fuller MP
    Chemosphere; 2010 Jun; 80(4):457-62. PubMed ID: 20435330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of biosolid incorporation to mollisol soils on Cr, Cu, Ni, Pb, and Zn fractionation, and relationship with their bioavailability.
    Guerra P; Ahumada I; Carrasco A
    Chemosphere; 2007 Aug; 68(11):2021-7. PubMed ID: 17418882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential of Sonchus arvensis for the phytoremediation of lead-contaminated soil.
    Surat W; Kruatrachue M; Pokethitiyook P; Tanhan P; Samranwanich T
    Int J Phytoremediation; 2008; 10():325-42. PubMed ID: 19260217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.