These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22908638)

  • 41. EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos.
    Jiang M; Liu S; Li Y; Li X; Luo Z; Song H; Chen Q
    Ecotoxicol Environ Saf; 2019 Apr; 170():502-512. PubMed ID: 30557708
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lead phytoextraction from contaminated soil with high-biomass plant species.
    Shen ZG; Li XD; Wang CC; Chen HM; Chua H
    J Environ Qual; 2002; 31(6):1893-900. PubMed ID: 12469839
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil.
    Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The use of NTA for lead phytoextraction from soil from a battery recycling site.
    Freitas EV; do Nascimento CW
    J Hazard Mater; 2009 Nov; 171(1-3):833-7. PubMed ID: 19595509
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of earthworm (Pheretima sp.) on three sequential ryegrass harvests for remediating lead/zinc mine tailings.
    Cheng J; Wong MH
    Int J Phytoremediation; 2008; 10(3):171-82. PubMed ID: 18710093
    [TBL] [Abstract][Full Text] [Related]  

  • 46. EDTA-enhanced phytoremediation of lead-contaminated soil by the halophyte Sesuvium portulacastrum.
    Zaier H; Ghnaya T; Ghabriche R; Chmingui W; Lakhdar A; Lutts S; Abdelly C
    Environ Sci Pollut Res Int; 2014 Jun; 21(12):7607-15. PubMed ID: 24604274
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pot experiment to study the uptake of Cd and Pb by three Indian mustards (Brassica juncea) grown in artificially contaminated soils.
    Lai HY; Chen SW; Chen ZS
    Int J Phytoremediation; 2008; 10(2):89-103. PubMed ID: 18709923
    [TBL] [Abstract][Full Text] [Related]  

  • 48. EFFECT OF INDOLE-3-ACETIC ACID, KINETIN, AND ETHYLENEDIAMINETETRAACETIC ACID ON PLANT GROWTH AND UPTAKE AND TRANSLOCATION OF LEAD, MICRONUTRIENTS, AND MACRONUTRIENTS IN ALFALFA PLANTS.
    López ML; Peralta-Videa JR; Parsons JG; Gardea-Torresdey JL; Duarte-Gardea M
    Int J Phytoremediation; 2009 Feb; 11(2):131-149. PubMed ID: 28133995
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimizing phytoremediation of heavy metal-contaminated soil by exploiting plants' stress adaptation.
    Barocsi A; Csintalan Z; Kocsanyi L; Dushenkov S; Kuperberg JM; Kucharski R; Richter PI
    Int J Phytoremediation; 2003; 5(1):13-23. PubMed ID: 12710232
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum.
    Evangelou MW; Bauer U; Ebel M; Schaeffer A
    Chemosphere; 2007 Jun; 68(2):345-53. PubMed ID: 17280708
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils.
    Komárek M; Tlustos P; Száková J; Chrastný V
    Environ Pollut; 2008 Jan; 151(1):27-38. PubMed ID: 17467862
    [TBL] [Abstract][Full Text] [Related]  

  • 52. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds.
    Luo C; Shen Z; Lou L; Li X
    Environ Pollut; 2006 Dec; 144(3):862-71. PubMed ID: 16616805
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of chelate application time on the phytoextraction of lead-contaminated soils.
    Begonia MT; Begonia GB; Miller GS; Gilliard D
    Bull Environ Contam Toxicol; 2004 Dec; 73(6):1033-40. PubMed ID: 15674717
    [No Abstract]   [Full Text] [Related]  

  • 54. Phytoextraction of lead from firing range soil by Vetiver grass.
    Wilde EW; Brigmon RL; Dunn DL; Heitkamp MA; Dagnan DC
    Chemosphere; 2005 Dec; 61(10):1451-7. PubMed ID: 15964059
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced Phytoextraction of Lead from Artificially Contaminated Soil by Mirabilis jalapa with Chelating Agents.
    Yan L; Li C; Zhang J; Moodley O; Liu S; Lan C; Gao Q; Zhang W
    Bull Environ Contam Toxicol; 2017 Aug; 99(2):208-212. PubMed ID: 28646396
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health.
    Epelde L; Becerril JM; Mijangos I; Garbisu C
    J Environ Qual; 2009; 38(5):2041-9. PubMed ID: 19704147
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments.
    Duquène L; Vandenhove H; Tack F; Meers E; Baeten J; Wannijn J
    Sci Total Environ; 2009 Feb; 407(5):1496-505. PubMed ID: 19054545
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process.
    Chen Y; Li X; Shen Z
    Chemosphere; 2004 Oct; 57(3):187-96. PubMed ID: 15312735
    [TBL] [Abstract][Full Text] [Related]  

  • 59. EDTA-assisted phytoextraction of heavy metals by turfgrass from municipal solid waste compost using permeable barriers and associated potential leaching risk.
    Zhao S; Lian F; Duo L
    Bioresour Technol; 2011 Jan; 102(2):621-6. PubMed ID: 20797852
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phytoavailability and fractionation of lead and manganese in a contaminated soil after application of three amendments.
    Padmavathiamma PK; Li LY
    Bioresour Technol; 2010 Jul; 101(14):5667-76. PubMed ID: 20219365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.