BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22908658)

  • 1. Oxalic acid enhances Cr tolerance in the accumulating plant Leersia hexandra Swartz.
    Wang D; Zhang X; Liu J; Zhu Y; Zhang H; Zhang A; Jin X
    Int J Phytoremediation; 2012 Dec; 14(10):966-77. PubMed ID: 22908658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil.
    Liu J; Duan C; Zhang X; Zhu Y; Lu X
    J Hazard Mater; 2011 Apr; 188(1-3):85-91. PubMed ID: 21320751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.
    Zhang XH; Liu J; Huang HT; Chen J; Zhu YN; Wang DQ
    Chemosphere; 2007 Apr; 67(6):1138-43. PubMed ID: 17207838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaccumulation and chemical form of chromium in Leersia hexandra Swartz.
    Zhang X; Liu J; Wang D; Zhu Y; Hu C; Sun J
    Bull Environ Contam Toxicol; 2009 Mar; 82(3):358-62. PubMed ID: 18953472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus Enhances Cr(VI) Uptake and Accumulation in Leersia hexandra Swartz.
    Wu CC; Liu J; Zhang XH; Wei SG
    Bull Environ Contam Toxicol; 2018 Dec; 101(6):738-743. PubMed ID: 30306192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic parameters and mechanisms of the batch biosorption of Cr(VI) and Cr(III) onto Leersia hexandra Swartz biomass.
    Li J; Lin Q; Zhang X; Yan Y
    J Colloid Interface Sci; 2009 May; 333(1):71-7. PubMed ID: 19251269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial dynamics of pH in the rhizosphere of Leersia hexandra Swartz at different chromium exposure.
    Ding N; Ullah H; Yu G; He Y; Liu L; Xie Y; Shahab A; Lin H
    Ecotoxicol Environ Saf; 2023 Sep; 263():115380. PubMed ID: 37597293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of iron-loaded sludge biochar amendments on phytoremediation potential of Cr-contaminated soils by Leersia hexandra swartz.
    Wang JC; Zhao JR; Huang QX; Yang LJ; Yu G; Xu YF; Liu LH
    Chemosphere; 2023 Oct; 337():139355. PubMed ID: 37385485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of phosphorous fertilizers on growth, Cu phytoextraction and tolerance of
    Lin H; Zhang C; Zhang X; Liu L; Chhuon K
    Int J Phytoremediation; 2020; 22(6):578-584. PubMed ID: 31809580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism study of Chromium influenced soil remediated by an uptake-detoxification system using hyperaccumulator, resistant microbe consortium, and nano iron complex.
    Wang C; Tan H; Li H; Xie Y; Liu H; Xu F; Xu H
    Environ Pollut; 2020 Feb; 257():113558. PubMed ID: 31708284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery and mechanism study of a novel chromium-accumulating plant, Lonicera japonica Thunb.
    Meng F; Gao Y; Feng Q
    Environ Sci Pollut Res Int; 2019 May; 26(14):13812-13817. PubMed ID: 30220064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of electron transfer in the bioadsorption of hexavalent chromium within Leersia hexandra Swartz granules by X-ray photoelectron spectroscopy.
    Li J; Lin Q; Zhang X
    J Hazard Mater; 2010 Oct; 182(1-3):598-602. PubMed ID: 20638174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineralogical characteristics of root iron plaque and its functional mechanism for regulating Cr phytoextraction of hyperaccumulator Leersia hexandra Swartz.
    Zhang X; Su C; Zhang Y; Lai S; Han S; Zhang X; Zheng J
    Environ Res; 2023 Jul; 228():115846. PubMed ID: 37024027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Characterization of Cr Tolerance and Accumulation in
    Dong BB; Chen YY; Hui HX; Lu WJ; Yang XQ; Liu YF
    Huan Jing Ke Xue; 2016 Oct; 37(10):4044-4053. PubMed ID: 29964442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz facilitated Cr(VI) reduction by shaping soil functional microbial communities.
    Xiao W; Zhang Q; Huang M; Zhao S; Chen D; Gao N; Chu T; Ye X
    Chemosphere; 2024 Apr; 353():141636. PubMed ID: 38447895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress.
    Zeng F; Chen S; Miao Y; Wu F; Zhang G
    Environ Pollut; 2008 Sep; 155(2):284-9. PubMed ID: 18162271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and biochemical responses of Leersia hexandra Swartz to nickel stress: Insights into antioxidant defense mechanisms and metal detoxification strategies.
    Chen M; Jiang P; Zhang X; Sunahara GI; Liu J; Yu G
    J Hazard Mater; 2024 Mar; 466():133578. PubMed ID: 38306837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Determination of organic acids in the root exudates of Cr-hyperaccumulator
    Wu C; Liu J; Zhang X
    Se Pu; 2018 Feb; 36(2):167-172. PubMed ID: 29582603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation potential and nutrient status of Barringtonia acutangula Gaerth. Tree seedlings grown under different chromium (CrVI) treatments.
    Kumar D; Tripathi DK; Chauhan DK
    Biol Trace Elem Res; 2014 Feb; 157(2):164-74. PubMed ID: 24399023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of combined pollution of chromium and benzo(a)pyrene on seed growth of Lolium perenne.
    Chigbo C; Batty L
    Chemosphere; 2013 Jan; 90(2):164-9. PubMed ID: 22795067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.