These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 22908951)
21. Oligonucleotides and their derivatives as tools for investigations of protein-nucleic acid interactions in template biocatalysis. Lavrik OI Nucleic Acids Symp Ser; 1991; (24):185-8. PubMed ID: 1726742 [TBL] [Abstract][Full Text] [Related]
22. Introduction of the alpha-P-borano-group into deoxynucleoside triphosphates increases their selectivity to HIV-1 reverse transcriptase relative to DNA polymerases. Dobrikov MI; Grady KM; Shaw BR Nucleosides Nucleotides Nucleic Acids; 2003 Mar; 22(3):275-82. PubMed ID: 12816386 [TBL] [Abstract][Full Text] [Related]
23. Hybridization properties and enzymatic replication of oligonucleotides containing the photocleavable 7-nitroindole base analog. Crey-Desbiolles C; Berthet N; Kotera M; Dumy P Nucleic Acids Res; 2005; 33(5):1532-43. PubMed ID: 15767278 [TBL] [Abstract][Full Text] [Related]
24. Labeling 3' Termini of Double-Stranded DNA Using the Klenow Fragment of Green MR; Sambrook J Cold Spring Harb Protoc; 2020 May; 2020(5):100651. PubMed ID: 32358054 [TBL] [Abstract][Full Text] [Related]
25. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket. Kaushik N; Pandey VN; Modak MJ Biochemistry; 1996 Jun; 35(22):7256-66. PubMed ID: 8679555 [TBL] [Abstract][Full Text] [Related]
26. Altering DNA polymerase incorporation fidelity by distorting the dNTP binding pocket with a bulky carcinogen-damaged template. Yan SF; Wu M; Geacintov NE; Broyde S Biochemistry; 2004 Jun; 43(24):7750-65. PubMed ID: 15196018 [TBL] [Abstract][Full Text] [Related]
27. Synthesis of deoxynucleoside triphosphates that include proline, urea, or sulfonamide groups and their polymerase incorporation into DNA. Hollenstein M Chemistry; 2012 Oct; 18(42):13320-30. PubMed ID: 22996052 [TBL] [Abstract][Full Text] [Related]
28. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases. Einolf HJ; Schnetz-Boutaud N; Guengerich FP Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338 [TBL] [Abstract][Full Text] [Related]
29. Incorporation of reporter molecule-labeled nucleotides by DNA polymerases. I. Chemical synthesis of various reporter group-labeled 2'-deoxyribonucleoside-5'-triphosphates. Giller G; Tasara T; Angerer B; Mühlegger K; Amacker M; Winter H Nucleic Acids Res; 2003 May; 31(10):2630-5. PubMed ID: 12736313 [TBL] [Abstract][Full Text] [Related]
30. Protein-nucleic acid interaction in reactions catalyzed with DNA polymerases. Knorre DG; Lavrik OI; Nevinsky GA Biochimie; 1988 May; 70(5):655-61. PubMed ID: 3139084 [TBL] [Abstract][Full Text] [Related]
31. Recognition of base-pairing by DNA polymerases during nucleotide incorporation: the properties of the mutagenic nucleotide dPTP alphaS. Harris VH; Smith CL; Cummins WJ; Hamilton AL; Hornby DP; Williams DM Org Biomol Chem; 2003 Jun; 1(12):2070-4. PubMed ID: 12945897 [TBL] [Abstract][Full Text] [Related]
32. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis. Gestl EE; Eckert KA Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450 [TBL] [Abstract][Full Text] [Related]
33. [Protein-nucleic acid interactions in reactions catalyzed by eukaryotic and prokaryotic DNA-polymerases]. Lavrik OI; Nevinskiĭ GA Biokhimiia; 1989 May; 54(5):757-64. PubMed ID: 2503066 [TBL] [Abstract][Full Text] [Related]
34. Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment. Furey WS; Joyce CM; Osborne MA; Klenerman D; Peliska JA; Balasubramanian S Biochemistry; 1998 Mar; 37(9):2979-90. PubMed ID: 9485450 [TBL] [Abstract][Full Text] [Related]
35. ø29 DNA polymerase residue Lys383, invariant at motif B of DNA-dependent polymerases, is involved in dNTP binding. Saturno J; Lázaro JM; Esteban FJ; Blanco L; Salas M J Mol Biol; 1997 Jun; 269(3):313-25. PubMed ID: 9199402 [TBL] [Abstract][Full Text] [Related]
36. Cross-coupling reactions of nucleoside triphosphates followed by polymerase incorporation. Construction and applications of base-functionalized nucleic acids. Hocek M; Fojta M Org Biomol Chem; 2008 Jul; 6(13):2233-41. PubMed ID: 18563253 [TBL] [Abstract][Full Text] [Related]
37. A method for filling in the cohesive ends of double-stranded DNA using Pfu DNA polymerase. Yang S; Li X; Ding D; Hou J; Jin Z; Yu X; Bo T; Li W; Li M Biotechnol Appl Biochem; 2005 Dec; 42(Pt 3):223-6. PubMed ID: 15966861 [TBL] [Abstract][Full Text] [Related]
38. Polymerization behavior of Klenow fragment and Taq DNA polymerase in short primer extension reactions. Zhao G; Guan Y Acta Biochim Biophys Sin (Shanghai); 2010 Oct; 42(10):722-8. PubMed ID: 20829187 [TBL] [Abstract][Full Text] [Related]
39. Heat activatable 3'-modified dNTPs: synthesis and application for hot start PCR. Koukhareva I; Haoqiang H; Yee J; Shum J; Paul N; Hogrefe RI; Lebedev AV Nucleic Acids Symp Ser (Oxf); 2008; (52):259-60. PubMed ID: 18776352 [TBL] [Abstract][Full Text] [Related]
40. Single-molecule detection of deoxyribonucleoside triphosphates in microdroplets. Breiner B; Johnson K; Stolarek M; Silva AL; Negrea A; Bell NM; Isaac TH; Dethlefsen M; Chana J; Ibbotson LA; Palmer RN; Bush J; Dunning AJ; Love DM; Pachoumi O; Kelly DJ; Shibahara A; Wu M; Sosna M; Dear PH; Tolle F; Petrini E; Amasio M; Shelford LR; Saavedra MS; Sheridan E; Kuleshova J; Podd GJ; Balmforth BW; Frayling CA Nucleic Acids Res; 2019 Sep; 47(17):e101. PubMed ID: 31318971 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]