These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 22909233)
1. Direct calculation of Li-ion transport in the solid electrolyte interphase. Shi S; Lu P; Liu Z; Qi Y; Hector LG; Li H; Harris SJ J Am Chem Soc; 2012 Sep; 134(37):15476-87. PubMed ID: 22909233 [TBL] [Abstract][Full Text] [Related]
2. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer. Li Y; Leung K; Qi Y Acc Chem Res; 2016 Oct; 49(10):2363-2370. PubMed ID: 27689438 [TBL] [Abstract][Full Text] [Related]
3. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon. Soto FA; Yan P; Engelhard MH; Marzouk A; Wang C; Xu G; Chen Z; Amine K; Liu J; Sprenkle VL; El-Mellouhi F; Balbuena PB; Li X Adv Mater; 2017 May; 29(18):. PubMed ID: 28266753 [TBL] [Abstract][Full Text] [Related]
4. Effect of lithiation potential and cycling on chemical and morphological evolution of Si thin film electrode studied by ToF-SIMS. Pereira-Nabais C; Światowska J; Rosso M; Ozanam F; Seyeux A; Gohier A; Tran-Van P; Cassir M; Marcus P ACS Appl Mater Interfaces; 2014 Aug; 6(15):13023-33. PubMed ID: 25058861 [TBL] [Abstract][Full Text] [Related]
5. Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries. Schroder KW; Dylla AG; Harris SJ; Webb LJ; Stevenson KJ ACS Appl Mater Interfaces; 2014 Dec; 6(23):21510-24. PubMed ID: 25402271 [TBL] [Abstract][Full Text] [Related]
6. Direct, operando observation of the bilayer solid electrolyte interphase structure: Electrolyte reduction on a non-intercalating electrode. Lee CH; Dura JA; LeBar A; DeCaluwe SC J Power Sources; 2019; 412():. PubMed ID: 32831460 [TBL] [Abstract][Full Text] [Related]
7. Nanostructural and Electrochemical Evolution of the Solid-Electrolyte Interphase on CuO Nanowires Revealed by Cryogenic-Electron Microscopy and Impedance Spectroscopy. Huang W; Boyle DT; Li Y; Li Y; Pei A; Chen H; Cui Y ACS Nano; 2019 Jan; 13(1):737-744. PubMed ID: 30589528 [TBL] [Abstract][Full Text] [Related]
8. In situ atomic force microscopy study of initial solid electrolyte interphase formation on silicon electrodes for Li-ion batteries. Tokranov A; Sheldon BW; Li C; Minne S; Xiao X ACS Appl Mater Interfaces; 2014 May; 6(9):6672-86. PubMed ID: 24670933 [TBL] [Abstract][Full Text] [Related]
9. First-Principles Analysis of Defect Thermodynamics and Ion Transport in Inorganic SEI Compounds: LiF and NaF. Yildirim H; Kinaci A; Chan MK; Greeley JP ACS Appl Mater Interfaces; 2015 Sep; 7(34):18985-96. PubMed ID: 26255641 [TBL] [Abstract][Full Text] [Related]
10. Role of conductive binder to direct solid-electrolyte interphase formation over silicon anodes. Browning KL; Browning JF; Doucet M; Yamada NL; Liu G; Veith GM Phys Chem Chem Phys; 2019 Aug; 21(31):17356-17365. PubMed ID: 31355379 [TBL] [Abstract][Full Text] [Related]
11. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. Li J; Dudney NJ; Nanda J; Liang C ACS Appl Mater Interfaces; 2014 Jul; 6(13):10083-8. PubMed ID: 24926882 [TBL] [Abstract][Full Text] [Related]
12. Wet Nanoindentation of the Solid Electrolyte Interphase on Thin Film Si Electrodes. Kuznetsov V; Zinn AH; Zampardi G; Borhani-Haghighi S; La Mantia F; Ludwig A; Schuhmann W; Ventosa E ACS Appl Mater Interfaces; 2015 Oct; 7(42):23554-63. PubMed ID: 26418194 [TBL] [Abstract][Full Text] [Related]
13. Role of Inorganic Surface Layer on Solid Electrolyte Interphase Evolution at Li-Metal Anodes. Kamphaus EP; Angarita-Gomez S; Qin X; Shao M; Engelhard M; Mueller KT; Murugesan V; Balbuena PB ACS Appl Mater Interfaces; 2019 Aug; 11(34):31467-31476. PubMed ID: 31368685 [TBL] [Abstract][Full Text] [Related]
14. Solid-electrolyte interphase nucleation and growth on carbonaceous negative electrodes for Li-ion batteries visualized with in situ atomic force microscopy. Luchkin SY; Lipovskikh SA; Katorova NS; Savina AA; Abakumov AM; Stevenson KJ Sci Rep; 2020 May; 10(1):8550. PubMed ID: 32444787 [TBL] [Abstract][Full Text] [Related]
16. Transition between growth of dense and porous films: theory of dual-layer SEI. von Kolzenberg L; Werres M; Tetzloff J; Horstmann B Phys Chem Chem Phys; 2022 Aug; 24(31):18469-18476. PubMed ID: 35713969 [TBL] [Abstract][Full Text] [Related]
17. In Situ Neutron Reflectometry Study of a Tungsten Oxide/Li-Ion Battery Electrolyte Interface. Rus ED; Dura JA ACS Appl Mater Interfaces; 2023 Jan; 15(2):2832-2842. PubMed ID: 36598862 [TBL] [Abstract][Full Text] [Related]
18. In Situ Neutron Reflectometry Study of Solid Electrolyte Interface (SEI) Formation on Tungsten Thin-Film Electrodes. Rus ED; Dura JA ACS Appl Mater Interfaces; 2019 Dec; 11(50):47553-47563. PubMed ID: 31815415 [TBL] [Abstract][Full Text] [Related]
19. Solid Electrolyte Interphase (SEI) at TiO Ventosa E; Madej E; Zampardi G; Mei B; Weide P; Antoni H; La Mantia F; Muhler M; Schuhmann W ACS Appl Mater Interfaces; 2017 Jan; 9(3):3123-3130. PubMed ID: 28036171 [TBL] [Abstract][Full Text] [Related]
20. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Zhou Y; Su M; Yu X; Zhang Y; Wang JG; Ren X; Cao R; Xu W; Baer DR; Du Y; Borodin O; Wang Y; Wang XL; Xu K; Xu Z; Wang C; Zhu Z Nat Nanotechnol; 2020 Mar; 15(3):224-230. PubMed ID: 31988500 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]