These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 22909351)

  • 1. Single point mutation induced alterations in the equilibrium structural transitions on the folding landscape of HIV-1 protease.
    Rout MK; Reddy JG; Phillips M; Hosur RV
    J Biomol Struct Dyn; 2013; 31(7):684-93. PubMed ID: 22909351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluctuating partially native-like topologies in the acid denatured ensemble of autolysis resistant HIV-1 protease.
    Rout MK; Hosur RV
    Arch Biochem Biophys; 2009 Feb; 482(1-2):33-41. PubMed ID: 19100236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution under Drug Pressure Remodels the Folding Free-Energy Landscape of Mature HIV-1 Protease.
    Louis JM; Roche J
    J Mol Biol; 2016 Jul; 428(13):2780-92. PubMed ID: 27170547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cooperative folding unit in HIV-1 protease. Implications for protein stability and occurrence of drug-induced mutations.
    Wallqvist A; Smythers GW; Covell DG
    Protein Eng; 1998 Nov; 11(11):999-1005. PubMed ID: 9876920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics studies on HIV-1 protease drug resistance and folding pathways.
    Cecconi F; Micheletti C; Carloni P; Maritan A
    Proteins; 2001 Jun; 43(4):365-72. PubMed ID: 11340653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autoprocessing of HIV-1 protease is tightly coupled to protein folding.
    Louis JM; Clore GM; Gronenborn AM
    Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular evolution of HIV-1 protease simulated at atomic detail.
    Tiana G; Broglia RA
    Proteins; 2009 Sep; 76(4):895-910. PubMed ID: 19296455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The complex folding behavior of HIV-1-protease monomer revealed by optical-tweezer single-molecule experiments and molecular dynamics simulations.
    Caldarini M; Sonar P; Valpapuram I; Tavella D; Volonté C; Pandini V; Vanoni MA; Aliverti A; Broglia RA; Tiana G; Cecconi C
    Biophys Chem; 2014 Dec; 195():32-42. PubMed ID: 25194276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of HIV-1-PR inhibitors that do not create resistance: blocking the folding of single monomers.
    Broglia RA; Tiana G; Sutto L; Provasi D; Simona F
    Protein Sci; 2005 Oct; 14(10):2668-81. PubMed ID: 16195553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Denaturation of HIV-1 protease (PR) monomer by acetic acid: mechanistic and trajectory insights from molecular dynamics simulations and NMR.
    Borkar A; Rout MK; Hosur RV
    J Biomol Struct Dyn; 2012; 29(5):893-903. PubMed ID: 22292950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Illustration of HIV-1 protease folding through a molten-globule-like intermediate using an experimental model that implicates alpha-crystallin and calcium ions.
    Dash C; Sastry M; Rao M
    Biochemistry; 2005 Mar; 44(10):3725-34. PubMed ID: 15751949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.
    Seibold SA; Cukier RI
    Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIV-1 protease folding and the design of drugs which do not create resistance.
    Broglia R; Levy Y; Tiana G
    Curr Opin Struct Biol; 2008 Feb; 18(1):60-6. PubMed ID: 18160276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The folding and dimerization of HIV-1 protease: evidence for a stable monomer from simulations.
    Levy Y; Caflisch A; Onuchic JN; Wolynes PG
    J Mol Biol; 2004 Jun; 340(1):67-79. PubMed ID: 15184023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants.
    Kozísek M; Bray J; Rezácová P; Sasková K; Brynda J; Pokorná J; Mammano F; Rulísek L; Konvalinka J
    J Mol Biol; 2007 Dec; 374(4):1005-16. PubMed ID: 17977555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of molecular dynamics simulations reveals changes in the denatured state and switch of folding pathways upon single-point mutation of a beta-sheet miniprotein.
    Muff S; Caflisch A
    Proteins; 2008 Mar; 70(4):1185-95. PubMed ID: 17847092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational proteomics analysis of binding mechanisms and molecular signatures of the HIV-1 protease drugs.
    Verkhivker G
    Artif Intell Med; 2009; 45(2-3):197-206. PubMed ID: 18926674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations.
    Rose RB; Craik CS; Stroud RM
    Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation between flexibility and positively selected HIV-1 protease mutants against inhibitors.
    Braz AS; Tufanetto P; Perahia D; Scott LP
    Proteins; 2012 Dec; 80(12):2680-91. PubMed ID: 22821809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.