BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22909409)

  • 1. Thermal and solution stability of lysozyme in the presence of sucrose, glucose, and trehalose.
    James S; McManus JJ
    J Phys Chem B; 2012 Aug; 116(34):10182-8. PubMed ID: 22909409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of sugar bioprotective mechanisms on the thermal denaturation of lysozyme from Raman scattering and differential scanning calorimetry investigations.
    Hédoux A; Willart JF; Ionov R; Affouard F; Guinet Y; Paccou L; Lerbret A; Descamps M
    J Phys Chem B; 2006 Nov; 110(45):22886-93. PubMed ID: 17092040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of sucrose and trehalose on the preservation of the native structure of spray-dried lysozyme.
    Liao YH; Brown MB; Nazir T; Quader A; Martin GP
    Pharm Res; 2002 Dec; 19(12):1847-53. PubMed ID: 12523664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of sucrose and trehalose on stability, kinetic properties, and thermal aggregation of firefly luciferase.
    Rasouli S; Hosseinkhani S; Yaghmaei P; Ebrahim-Habibi A
    Appl Biochem Biotechnol; 2011 Sep; 165(2):572-82. PubMed ID: 21617898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do trehalose, maltose, and sucrose influence some structural and dynamical properties of lysozyme? Insight from molecular dynamics simulations.
    Lerbret A; Bordat P; Affouard F; Hédoux A; Guinet Y; Descamps M
    J Phys Chem B; 2007 Aug; 111(31):9410-20. PubMed ID: 17629322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying.
    Jovanović N; Bouchard A; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Eur J Pharm Sci; 2006 Mar; 27(4):336-45. PubMed ID: 16338123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation and chemical reaction in hen lysozyme caused by heating at pH 6 are depressed by osmolytes, sucrose and trehalose.
    Ueda T; Nagata M; Imoto T
    J Biochem; 2001 Oct; 130(4):491-6. PubMed ID: 11574068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal aggregation of bovine serum albumin in trehalose and sucrose aqueous solutions.
    Panzica M; Emanuele A; Cordone L
    J Phys Chem B; 2012 Oct; 116(39):11829-36. PubMed ID: 22845790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Sucrose and Trehalose for Protein Stabilization Using Differential Scanning Calorimetry.
    Jonsson O; Lundell A; Rosell J; You S; Ahlgren K; Swenson J
    J Phys Chem B; 2024 May; 128(20):4922-4930. PubMed ID: 38733344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of protein dynamics as affected by sugars: a neutron scattering study.
    Magazù S; Romeo G; Telling MT
    Eur Biophys J; 2007 Sep; 36(7):685-91. PubMed ID: 17657485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible and non-reversible thermal denaturation of lysozyme with varying pH at low ionic strength.
    Blumlein A; McManus JJ
    Biochim Biophys Acta; 2013 Oct; 1834(10):2064-70. PubMed ID: 23774197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable sugar-based protein formulations by supercritical fluid drying.
    Jovanović N; Bouchard A; Sutter M; Van Speybroeck M; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Int J Pharm; 2008 Jan; 346(1-2):102-8. PubMed ID: 17659851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of protein solution by a novel experimental design method using thermodynamic properties.
    Kim NA; An IB; Lee SY; Park ES; Jeong SH
    Arch Pharm Res; 2012 Sep; 35(9):1609-19. PubMed ID: 23054718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose.
    Kaushik JK; Bhat R
    J Biol Chem; 2003 Jul; 278(29):26458-65. PubMed ID: 12702728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trehalose-protein interaction in aqueous solution.
    Lins RD; Pereira CS; Hünenberger PH
    Proteins; 2004 Apr; 55(1):177-86. PubMed ID: 14997551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the interaction of proteins and disaccharides-The effect of pH and concentration.
    Reichert D; Gröger S; Hackel C
    Biopolymers; 2017 Feb; 107(2):39-45. PubMed ID: 27677543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of crystallizing and non-crystallizing cosolutes on succinate buffer crystallization and the consequent pH shift in frozen solutions.
    Sundaramurthi P; Suryanarayanan R
    Pharm Res; 2011 Feb; 28(2):374-85. PubMed ID: 20927571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of alcohols on aqueous lysozyme-lysozyme interactions from static light-scattering measurements.
    Liu W; Bratko D; Prausnitz JM; Blanch HW
    Biophys Chem; 2004 Feb; 107(3):289-98. PubMed ID: 14967244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between β-relaxation and structural stability of lysozyme: microscopic insight on thermostabilization mechanism by trehalose from Raman spectroscopy experiments.
    Hédoux A; Paccou L; Guinet Y
    J Chem Phys; 2014 Jun; 140(22):225102. PubMed ID: 24929414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of protein-protein interactions as assessed by affinity chromatography with colloidal protein stability: a case study with lysozyme.
    Le Brun V; Friess W; Bassarab S; Garidel P
    Pharm Dev Technol; 2010; 15(4):421-30. PubMed ID: 19780642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.