BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 22909549)

  • 1. Porous PLGA scaffolds for controlled release of naked and polyethyleneimine-complexed DNA.
    Ravi N; Gupta G; Milbrandt TA; Puleo DA
    Biomed Mater; 2012 Oct; 7(5):055007. PubMed ID: 22909549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled and sustained gene delivery from injectable, porous PLGA scaffolds.
    Jeon O; Krebs M; Alsberg E
    J Biomed Mater Res A; 2011 Jul; 98(1):72-9. PubMed ID: 21538827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophilized 3D porous scaffold for effective plasmid DNA delivery.
    Oh SH; Kim TH; Jang SH; Im GI; Lee JH
    J Biomed Mater Res A; 2011 Jun; 97(4):441-50. PubMed ID: 21484988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicomechanical properties of sintered scaffolds formed from porous and protein-loaded poly(DL-lactic-co-glycolic acid) microspheres for potential use in bone tissue engineering.
    Boukari Y; Scurr DJ; Qutachi O; Morris AP; Doughty SW; Rahman CV; Billa N
    J Biomater Sci Polym Ed; 2015; 26(12):796-811. PubMed ID: 26065672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres.
    Song K; Liu Y; Macedo HM; Jiang L; Li C; Mei G; Liu T
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1506-13. PubMed ID: 23827602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysine-based peptide-functionalized PLGA foams for controlled DNA delivery.
    Nie H; Khew ST; Lee LY; Poh KL; Tong YW; Wang CH
    J Control Release; 2009 Aug; 138(1):64-70. PubMed ID: 19409431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study.
    Chen SH; Wang XL; Xie XH; Zheng LZ; Yao D; Wang DP; Leng Y; Zhang G; Qin L
    Acta Biomater; 2012 Aug; 8(8):3128-37. PubMed ID: 22543006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of poly(lactic-co-glycolic acid) (PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds.
    Zhao L; Wu C; Lin K; Chang J
    Biomed Mater Eng; 2012; 22(5):289-300. PubMed ID: 23023146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA.
    Nie H; Wang CH
    J Control Release; 2007 Jul; 120(1-2):111-21. PubMed ID: 17512077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes.
    Im GI; Kim HJ; Lee JH
    Biomaterials; 2011 Jul; 32(19):4385-92. PubMed ID: 21421267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y
    Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled release of insulin-like growth factor-1 and bone marrow stromal cell function of bone-like mineral layer-coated poly(lactic-co-glycolic acid) scaffolds.
    Jayasuriya AC; Shah C
    J Tissue Eng Regen Med; 2008 Jan; 2(1):43-9. PubMed ID: 18361482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering.
    Huang W; Shi X; Ren L; Du C; Wang Y
    Biomaterials; 2010 May; 31(15):4278-85. PubMed ID: 20199806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT
    J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L
    Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres.
    Son JS; Appleford M; Ong JL; Wenke JC; Kim JM; Choi SH; Oh DS
    J Control Release; 2011 Jul; 153(2):133-40. PubMed ID: 21420453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair.
    Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA
    Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4).
    Huang YC; Simmons C; Kaigler D; Rice KG; Mooney DJ
    Gene Ther; 2005 Mar; 12(5):418-26. PubMed ID: 15647766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential BMP-2/BMP-7 delivery from polyester nanocapsules.
    Yilgor P; Hasirci N; Hasirci V
    J Biomed Mater Res A; 2010 May; 93(2):528-36. PubMed ID: 19585564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEGylated J591 mAb loaded in PLGA-PEG-PLGA tri-block copolymer for targeted delivery: in vitro evaluation in human prostate cancer cells.
    Moffatt S; Cristiano RJ
    Int J Pharm; 2006 Jul; 317(1):10-3. PubMed ID: 16713147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.