These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22910039)

  • 41. Indolylpiperidine derivatives as potent and selective α1B adrenoceptor antagonists.
    Hayashi R; Ohmori E; Moriwaki M; Kumagai H; Isogaya M
    Bioorg Med Chem Lett; 2015 Sep; 25(18):3921-3. PubMed ID: 26238322
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Potent heteroarylpiperidine and carboxyphenylpiperidine 1-alkyl-cyclopentane carboxamide CCR2 antagonists.
    Pasternak A; Goble SD; Vicario PP; Di Salvo J; Ayala JM; Struthers M; DeMartino JA; Mills SG; Yang L
    Bioorg Med Chem Lett; 2008 Feb; 18(3):994-8. PubMed ID: 18164199
    [TBL] [Abstract][Full Text] [Related]  

  • 43. N-(6-chloro-pyridin-3-yl)-3,4-difluoro-benzamide (ICA-27243): a novel, selective KCNQ2/Q3 potassium channel activator.
    Wickenden AD; Krajewski JL; London B; Wagoner PK; Wilson WA; Clark S; Roeloffs R; McNaughton-Smith G; Rigdon GC
    Mol Pharmacol; 2008 Mar; 73(3):977-86. PubMed ID: 18089837
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The
    Wang Y; Eldstrom J; Fedida D
    Mol Pharmacol; 2020 Feb; 97(2):132-144. PubMed ID: 31722973
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Discovery of Novel Retigabine Derivatives as Potent KCNQ4 and KCNQ5 Channel Agonists with Improved Specificity.
    Wang L; Qiao GH; Hu HN; Gao ZB; Nan FJ
    ACS Med Chem Lett; 2019 Jan; 10(1):27-33. PubMed ID: 30655942
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of KCNQ channel modulators on the M-type potassium current in primate retinal pigment epithelium.
    Pattnaik BR; Hughes BA
    Am J Physiol Cell Physiol; 2012 Mar; 302(5):C821-33. PubMed ID: 22135213
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rottlerin: Structure Modifications and KCNQ1/KCNE1 Ion Channel Activity.
    Lübke M; Schreiber JA; Le Quoc T; Körber F; Müller J; Sivanathan S; Matschke V; Schubert J; Strutz-Seebohm N; Seebohm G; Scherkenbeck J
    ChemMedChem; 2020 Jun; 15(12):1078-1088. PubMed ID: 32338831
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel role of the antitumor agent tricyclodecan-9-yl-xanthogenate as an open channel blocker of KCNQ1/KCNE1.
    Wu M; Takemoto M; Luo H; Xu JJ; Lu MH; Kameyama M; Takumi T; Song WJ
    Eur J Pharmacol; 2018 Apr; 824():99-107. PubMed ID: 29438706
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The human ether-a-go-go-related gene activator NS1643 enhances epilepsy-associated KCNQ channels.
    Li P; Chen X; Zhang Q; Zheng Y; Jiang H; Yang H; Gao Z
    J Pharmacol Exp Ther; 2014 Dec; 351(3):596-604. PubMed ID: 25232191
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An atom economic synthesis and AChE inhibitory activity of novel dispiro 7-aryltetrahydro-1H-pyrrolo[1,2-c][1,3]thiazole and 4-aryloctahydroindolizine N-methylpiperidin-4-one hybrid heterocycles.
    Sivakumar S; Ranjith Kumar R; Ali MA; Choon TS
    Eur J Med Chem; 2013 Jul; 65():240-8. PubMed ID: 23721952
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence for KCNQ1 K+ channel expression in rat zymogen granule membranes and involvement in cholecystokinin-induced pancreatic acinar secretion.
    Lee WK; Torchalski B; Roussa E; Thévenod F
    Am J Physiol Cell Physiol; 2008 Apr; 294(4):C879-92. PubMed ID: 18216164
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 1-[1-Hexyl-6-(methyloxy)-1H-indazol-3-yl]-2-methyl-1-propanone, a potent and highly selective small molecule blocker of the large-conductance voltage-gated and calcium-dependent K+ channel.
    Zeng H; Gordon E; Lin Z; Lozinskaya IM; Willette RN; Xu X
    J Pharmacol Exp Ther; 2008 Oct; 327(1):168-77. PubMed ID: 18591221
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Downregulation of KCNQ5 expression in the rat pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia.
    Zimmer J; Takahashi T; Hofmann AD; Puri P
    J Pediatr Surg; 2017 May; 52(5):702-705. PubMed ID: 28189443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A shared mechanism for lipid- and beta-subunit-coordinated stabilization of the activated K+ channel voltage sensor.
    Choi E; Abbott GW
    FASEB J; 2010 May; 24(5):1518-24. PubMed ID: 20040519
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pharmacogenetics of KCNQ channel activation in 2 potassium channelopathy mouse models of epilepsy.
    Vanhoof-Villalba SL; Gautier NM; Mishra V; Glasscock E
    Epilepsia; 2018 Feb; 59(2):358-368. PubMed ID: 29265344
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nano-environmental changes by KCNE proteins modify KCNQ channel function.
    Nakajo K; Kubo Y
    Channels (Austin); 2011; 5(5):397-401. PubMed ID: 21654200
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Desensitization of chemical activation by auxiliary subunits: convergence of molecular determinants critical for augmenting KCNQ1 potassium channels.
    Gao Z; Xiong Q; Sun H; Li M
    J Biol Chem; 2008 Aug; 283(33):22649-58. PubMed ID: 18490447
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Determinants within the turret and pore-loop domains of KCNQ3 K+ channels governing functional activity.
    Zaika O; Hernandez CC; Bal M; Tolstykh GP; Shapiro MS
    Biophys J; 2008 Dec; 95(11):5121-37. PubMed ID: 18790849
    [TBL] [Abstract][Full Text] [Related]  

  • 59. KCNQ1 channels sense small changes in cell volume.
    Grunnet M; Jespersen T; MacAulay N; Jørgensen NK; Schmitt N; Pongs O; Olesen SP; Klaerke DA
    J Physiol; 2003 Jun; 549(Pt 2):419-27. PubMed ID: 12702742
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.