BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22910119)

  • 1. Construction and characterization of recombinant Bacillus subtilis JY123 able to transport xylose efficiently.
    Park YC; Jun SY; Seo JH
    J Biotechnol; 2012 Nov; 161(4):402-6. PubMed ID: 22910119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H
    Kim H; Lee HS; Park H; Lee DH; Boles E; Chung D; Park YC
    Enzyme Microb Technol; 2017 Dec; 107():7-14. PubMed ID: 28899489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Bacillus subtilis AraE protein displays a broad substrate specificity for several different sugars.
    Krispin O; Allmansberger R
    J Bacteriol; 1998 Jun; 180(12):3250-2. PubMed ID: 9620981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars.
    Sasaki M; Jojima T; Kawaguchi H; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):105-15. PubMed ID: 19529932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.
    Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T
    PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of D-ribose biosynthesis in Bacillus subtilis JY200 deficient in transketolase gene.
    Park YC; Choi JH; Bennett GN; Seo JH
    J Biotechnol; 2006 Feb; 121(4):508-16. PubMed ID: 16143417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization.
    Sá-Nogueira I; Ramos SS
    J Bacteriol; 1997 Dec; 179(24):7705-11. PubMed ID: 9401028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures.
    Chen T; Liu WX; Fu J; Zhang B; Tang YJ
    J Biotechnol; 2013 Dec; 168(4):499-505. PubMed ID: 24120578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa.
    Cheng H; Wang B; Lv J; Jiang M; Lin S; Deng Z
    Microb Cell Fact; 2011 Feb; 10():5. PubMed ID: 21299871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multitask ATPase serving different ABC-type sugar importers in Bacillus subtilis.
    Ferreira MJ; Sá-Nogueira Id
    J Bacteriol; 2010 Oct; 192(20):5312-8. PubMed ID: 20693325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and characterization of a xylose-dependent system for expression of cloned genes in Bacillus subtilis: conditional complementation of a teichoic acid mutant.
    Bhavsar AP; Zhao X; Brown ED
    Appl Environ Microbiol; 2001 Jan; 67(1):403-10. PubMed ID: 11133472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a new catabolite repression resistant promoter isolated from Bacillus subtilis KCC103 for hyper-production of recombinant enzymes.
    Nagarajan DR; Krishnan C
    Protein Expr Purif; 2010 Mar; 70(1):122-8. PubMed ID: 19815075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of xylA genes encoding xylose isomerases from Escherichia coli and Streptomyces coelicolor in the methylotrophic yeast Hansenula polymorpha.
    Voronovsky AY; Ryabova OB; Verba OV; Ishchuk OP; Dmytruk KV; Sibirny AA
    FEMS Yeast Res; 2005 Nov; 5(11):1055-62. PubMed ID: 16243589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol.
    Madhavan A; Tamalampudi S; Ushida K; Kanai D; Katahira S; Srivastava A; Fukuda H; Bisaria VS; Kondo A
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1067-78. PubMed ID: 19050860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro.
    Ha SJ; Kim SR; Choi JH; Park MS; Jin YS
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):77-84. PubMed ID: 21655987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of different Bacillus subtilis expression systems.
    Vavrová L; Muchová K; Barák I
    Res Microbiol; 2010 Nov; 161(9):791-7. PubMed ID: 20863884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions.
    Sasaki M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):691-9. PubMed ID: 18810427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning and characterization of the xylose isomerase gene from a thermophilic Bacillus species.
    Liao WX; Earnest L; Kok SL; Jeyaseelan K
    Biochem Mol Biol Int; 1995 Jun; 36(2):401-10. PubMed ID: 7663444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and expression of the Escherichia coli D-xylose isomerase gene in Bacillus subtilis.
    Huang JJ; Ho NW
    Biochem Biophys Res Commun; 1985 Feb; 126(3):1154-60. PubMed ID: 3919721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fed-batch production of D-ribose from sugar mixtures by transketolase-deficient Bacillus subtilis SPK1.
    Park YC; Kim SG; Park K; Lee KH; Seo JH
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):297-302. PubMed ID: 15375635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.