BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22910119)

  • 41. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain.
    Bellissimi E; van Dijken JP; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2009 May; 9(3):358-64. PubMed ID: 19416101
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reduction of PDC1 expression in S. cerevisiae with xylose isomerase on xylose medium.
    Kim DM; Choi SH; Ko BS; Jeong GY; Jang HB; Han JG; Jeong KH; Lee HY; Won Y; Kim IC
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):183-9. PubMed ID: 21989637
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation.
    Tanino T; Hotta A; Ito T; Ishii J; Yamada R; Hasunuma T; Ogino C; Ohmura N; Ohshima T; Kondo A
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1215-21. PubMed ID: 20853104
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetic system constructed to overproduce and secrete proinsulin in Bacillus subtilis.
    Olmos-Soto J; Contreras-Flores R
    Appl Microbiol Biotechnol; 2003 Sep; 62(4):369-73. PubMed ID: 12690416
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Expression and secretion of a single-chain sweet protein monellin in Bacillus subtilis by sacB promoter and signal peptide.
    Chen Z; Heng C; Li Z; Liang X; Xinchen S
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1377-81. PubMed ID: 17028871
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inverse metabolic engineering of Bacillus subtilis for xylose utilization based on adaptive evolution and whole-genome sequencing.
    Zhang B; Li N; Wang Z; Tang YJ; Chen T; Zhao X
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):885-96. PubMed ID: 25620468
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of oxygen supply and mixed sugar concentration on D-ribose production by a transketolase-deficient Bacillus subtilis SPK1.
    Park YC; Lee HJ; Kim CS; Seo JH
    J Microbiol Biotechnol; 2013 Apr; 23(4):560-4. PubMed ID: 23568212
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis.
    Wu Y; Chen T; Liu Y; Lv X; Li J; Du G; Ledesma-Amaro R; Liu L
    Metab Eng; 2018 Sep; 49():232-241. PubMed ID: 30176395
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improvement of ectoine productivity by using sugar transporter-overexpressing Halomonas elongata.
    Tanimura K; Matsumoto T; Nakayama H; Tanaka T; Kondo A
    Enzyme Microb Technol; 2016 Jul; 89():63-8. PubMed ID: 27233128
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture.
    Khlebnikov A; Risa O; Skaug T; Carrier TA; Keasling JD
    J Bacteriol; 2000 Dec; 182(24):7029-34. PubMed ID: 11092865
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Homogeneous expression of the P(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter.
    Khlebnikov A; Datsenko KA; Skaug T; Wanner BL; Keasling JD
    Microbiology (Reading); 2001 Dec; 147(Pt 12):3241-7. PubMed ID: 11739756
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Construction of
    Yin Y; Wang P; Wang X; Wen J
    Front Microbiol; 2023; 14():1342199. PubMed ID: 38249479
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production of surfactin using pentose carbohydrate by Bacillus subtilis.
    Khan AW; Rahman MS; Zohora US; Okanami M; Ano T
    J Environ Sci (China); 2011 Jun; 23 Suppl():S63-5. PubMed ID: 25084596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Construction of a novel, stable, food-grade expression system by engineering the endogenous toxin-antitoxin system in Bacillus subtilis.
    Yang S; Kang Z; Cao W; Du G; Chen J
    J Biotechnol; 2016 Feb; 219():40-7. PubMed ID: 26721182
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Construction and analysis of a modified transposable element carrying an outward directed inducible promoter for Bacillus subtilis.
    Mulder KC; Schumann W
    Curr Microbiol; 2014 May; 68(5):569-74. PubMed ID: 24370625
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose.
    Yan P; Wu Y; Yang L; Wang Z; Chen T
    Biotechnol Lett; 2018 Feb; 40(2):393-398. PubMed ID: 29236191
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A wheat bran inducible expression system for the efficient production of α-L-arabinofuranosidase in Bacillus subtilis.
    Ji M; Li S; Chen A; Liu Y; Xie Y; Duan H; Shi J; Sun J
    Enzyme Microb Technol; 2021 Mar; 144():109726. PubMed ID: 33541569
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Production of xylitol by metabolically engineered strains of Bacillus subtilis.
    Povelainen M; Miasnikov AN
    J Biotechnol; 2007 Jan; 128(1):24-31. PubMed ID: 17079043
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the depletion of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase in Escherichia coli and Bacillus subtilis.
    Campbell TL; Brown ED
    J Bacteriol; 2002 Oct; 184(20):5609-18. PubMed ID: 12270818
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of a strictly regulated xylose-induced expression system in Streptomyces.
    Noguchi Y; Kashiwagi N; Uzura A; Ogino C; Kondo A; Ikeda H; Sota M
    Microb Cell Fact; 2018 Sep; 17(1):151. PubMed ID: 30241528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.