BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 22910377)

  • 1. Structural and functional studies of Leishmania braziliensis Hsp90.
    Silva KP; Seraphim TV; Borges JC
    Biochim Biophys Acta; 2013 Jan; 1834(1):351-61. PubMed ID: 22910377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low resolution structural studies indicate that the activator of Hsp90 ATPase 1 (Aha1) of Leishmania braziliensis has an elongated shape which allows its interaction with both N- and M-domains of Hsp90.
    Seraphim TV; Alves MM; Silva IM; Gomes FE; Silva KP; Murta SM; Barbosa LR; Borges JC
    PLoS One; 2013; 8(6):e66822. PubMed ID: 23826147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low sequence identity but high structural and functional conservation: The case of Hsp70/Hsp90 organizing protein (Hop/Sti1) of Leishmania braziliensis.
    Batista FAH; Seraphim TV; Santos CA; Gonzaga MR; Barbosa LRS; Ramos CHI; Borges JC
    Arch Biochem Biophys; 2016 Jun; 600():12-22. PubMed ID: 27103305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of two p23 co-chaperone isoforms in Leishmania braziliensis exhibiting similar structures and Hsp90 interaction properties despite divergent stabilities.
    Batista FA; Almeida GS; Seraphim TV; Silva KP; Murta SM; Barbosa LR; Borges JC
    FEBS J; 2015 Jan; 282(2):388-406. PubMed ID: 25369258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights on the structural dynamics of Leishmania braziliensis Hsp90 molecular chaperone by small angle X-ray scattering.
    Seraphim TV; Silva KP; Dores-Silva PR; Barbosa LR; Borges JC
    Int J Biol Macromol; 2017 Apr; 97():503-512. PubMed ID: 28104372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional studies of the Leishmania braziliensis SGT co-chaperone indicate that it shares structural features with HIP and can interact with both Hsp90 and Hsp70 with similar affinities.
    Coto ALS; Seraphim TV; Batista FAH; Dores-Silva PR; Barranco ABF; Teixeira FR; Gava LM; Borges JC
    Int J Biol Macromol; 2018 Oct; 118(Pt A):693-706. PubMed ID: 29959008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the role of Arg97 in Heat shock protein 90 N-terminal domain from the parasite Leishmania braziliensis through site-directed mutagenesis on the human counterpart.
    Tassone G; Mangani S; Botta M; Pozzi C
    Biochim Biophys Acta Proteins Proteom; 2018 Nov; 1866(11):1190-1198. PubMed ID: 30248409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of small molecule inhibitors of
    Batista FAH; Ramos SL; Tassone G; Leitão A; Montanari CA; Botta M; Mori M; Borges JC
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):639-649. PubMed ID: 32048531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.
    Prodromou C; Siligardi G; O'Brien R; Woolfson DN; Regan L; Panaretou B; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1999 Feb; 18(3):754-62. PubMed ID: 9927435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural studies on the co-chaperone Hop and its complexes with Hsp90.
    Onuoha SC; Coulstock ET; Grossmann JG; Jackson SE
    J Mol Biol; 2008 Jun; 379(4):732-44. PubMed ID: 18485364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of Plasmodium falciparum Hsp90 indicates a high flexible dimer.
    Silva NSM; Torricillas MS; Minari K; Barbosa LRS; Seraphim TV; Borges JC
    Arch Biochem Biophys; 2020 Sep; 690():108468. PubMed ID: 32679196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.
    Meyer P; Prodromou C; Liao C; Hu B; Roe SM; Vaughan CK; Vlasic I; Panaretou B; Piper PW; Pearl LH
    EMBO J; 2004 Mar; 23(6):1402-10. PubMed ID: 15039704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enforced N-domain proximity stimulates Hsp90 ATPase activity and is compatible with function in vivo.
    Pullen L; Bolon DN
    J Biol Chem; 2011 Apr; 286(13):11091-8. PubMed ID: 21278257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-terminal residues regulate the catalytic efficiency of the Hsp90 ATPase cycle.
    Richter K; Reinstein J; Buchner J
    J Biol Chem; 2002 Nov; 277(47):44905-10. PubMed ID: 12235160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and mechanism of the Hsp90 molecular chaperone machinery.
    Pearl LH; Prodromou C
    Annu Rev Biochem; 2006; 75():271-94. PubMed ID: 16756493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90.
    Wegele H; Muschler P; Bunck M; Reinstein J; Buchner J
    J Biol Chem; 2003 Oct; 278(41):39303-10. PubMed ID: 12890674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins.
    McLaughlin SH; Sobott F; Yao ZP; Zhang W; Nielsen PR; Grossmann JG; Laue ED; Robinson CV; Jackson SE
    J Mol Biol; 2006 Feb; 356(3):746-58. PubMed ID: 16403413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic inhibition of the Hsp90 ATPase activity.
    Richter K; Moser S; Hagn F; Friedrich R; Hainzl O; Heller M; Schlee S; Kessler H; Reinstein J; Buchner J
    J Biol Chem; 2006 Apr; 281(16):11301-11. PubMed ID: 16461354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved conformational changes in the ATPase cycle of human Hsp90.
    Richter K; Soroka J; Skalniak L; Leskovar A; Hessling M; Reinstein J; Buchner J
    J Biol Chem; 2008 Jun; 283(26):17757-65. PubMed ID: 18400751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle.
    Weikl T; Muschler P; Richter K; Veit T; Reinstein J; Buchner J
    J Mol Biol; 2000 Nov; 303(4):583-92. PubMed ID: 11054293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.