These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 22910451)
21. Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Chipasa KB Waste Manag; 2003; 23(2):135-43. PubMed ID: 12623088 [TBL] [Abstract][Full Text] [Related]
22. Metals removal and recovery in bioelectrochemical systems: A review. Nancharaiah YV; Venkata Mohan S; Lens PN Bioresour Technol; 2015 Nov; 195():102-14. PubMed ID: 26116446 [TBL] [Abstract][Full Text] [Related]
23. Dechlorination of 4-chlorophenol to phenol in bioelectrochemical systems. Wen Q; Yang T; Wang S; Chen Y; Cong L; Qu Y J Hazard Mater; 2013 Jan; 244-245():743-9. PubMed ID: 23183343 [TBL] [Abstract][Full Text] [Related]
24. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays. Ribé V; Nehrenheim E; Odlare M Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934 [TBL] [Abstract][Full Text] [Related]
25. Efficiencies of metal separation and recovery in ash-melting of municipal solid waste under non-oxidative atmospheres with different reducing abilities. Okada T; Tomikawa H J Environ Manage; 2016 Jan; 166():147-55. PubMed ID: 26496845 [TBL] [Abstract][Full Text] [Related]
26. Treatment of landfill leachate by combined aged-refuse bioreactor and electro-oxidation. Lei Y; Shen Z; Huang R; Wang W Water Res; 2007 Jun; 41(11):2417-26. PubMed ID: 17434200 [TBL] [Abstract][Full Text] [Related]
27. Removal of heavy metals in medical waste incineration fly ash by Na Li YM; Wang CF; Wang LJ; Huang TY; Zhou GZ J Air Waste Manag Assoc; 2020 Sep; 70(9):904-914. PubMed ID: 32412866 [TBL] [Abstract][Full Text] [Related]
28. Potential for leaching of heavy metals in open-burning bottom ash and soil from a non-engineered solid waste landfill. Gwenzi W; Gora D; Chaukura N; Tauro T Chemosphere; 2016 Mar; 147():144-54. PubMed ID: 26766350 [TBL] [Abstract][Full Text] [Related]
29. Precipitation of heavy metals from coal ash leachate using biogenic hydrogen sulfide generated from FGD gypsum. Jayaranjan ML; Annachhatre AP Water Sci Technol; 2013; 67(2):311-8. PubMed ID: 23168629 [TBL] [Abstract][Full Text] [Related]
30. The effect of isosaccharinic acid (ISA) on the mobilization of metals in municipal solid waste incineration (MSWI) dry scrubber residue. Svensson M; Berg M; Ifwer K; Sjöblom R; Ecke H J Hazard Mater; 2007 Jun; 144(1-2):477-84. PubMed ID: 17118536 [TBL] [Abstract][Full Text] [Related]
31. Cadmium (II) removal mechanisms in microbial electrolysis cells. Colantonio N; Kim Y J Hazard Mater; 2016 Jul; 311():134-41. PubMed ID: 26970043 [TBL] [Abstract][Full Text] [Related]
32. Bioelectrochemical technology for recovery of silver from contaminated aqueous solution: a review. Ho NAD; Babel S Environ Sci Pollut Res Int; 2021 Dec; 28(45):63480-63494. PubMed ID: 32666459 [TBL] [Abstract][Full Text] [Related]
33. Heavy metal removal from industrial wastewater by clinoptilolite. Kocasoy G; Sahin V J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Dec; 42(14):2139-46. PubMed ID: 18074286 [TBL] [Abstract][Full Text] [Related]
34. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management. Bratina B; Šorgo A; Kramberger J; Ajdnik U; Zemljič LF; Ekart J; Šafarič R J Environ Manage; 2016 Dec; 183(Pt 3):1009-1025. PubMed ID: 27692514 [TBL] [Abstract][Full Text] [Related]
35. Sequential recovery of copper and nickel from wastewater without net energy input. Cai WF; Fang XW; Xu MX; Liu XH; Wang YH Water Sci Technol; 2015; 71(5):754-60. PubMed ID: 25768223 [TBL] [Abstract][Full Text] [Related]
36. A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage. Pozo G; Pongy S; Keller J; Ledezma P; Freguia S Water Res; 2017 Dec; 126():411-420. PubMed ID: 28987953 [TBL] [Abstract][Full Text] [Related]
37. Co-processing of MSWI fly ash and copper smelting wastewater and the leaching behavior of the co-processing products in landfill leachate. Sun X; Guo Y; Yan Y; Li J; Shen J; Han W; Sun X; Wang L Waste Manag; 2019 Jul; 95():628-635. PubMed ID: 31351650 [TBL] [Abstract][Full Text] [Related]
38. Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China. Wang P; Hu Y; Cheng H Environ Pollut; 2019 Sep; 252(Pt A):461-475. PubMed ID: 31158674 [TBL] [Abstract][Full Text] [Related]
39. [Effects of adsorbents on partitioning and fixation of heavy metals in the incineration process of sewage sludge]. Liu JY; Sun SY; Chen T Huan Jing Ke Xue; 2013 Mar; 34(3):1166-73. PubMed ID: 23745430 [TBL] [Abstract][Full Text] [Related]
40. Stabilization treatment of the heavy metals in fly ash from municipal solid waste incineration using diisopropyl dithiophosphate potassium. Xu Y; Chen Y; Feng Y Environ Technol; 2013; 34(9-12):1411-9. PubMed ID: 24191474 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]