BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 22911106)

  • 1. Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation.
    Hamd W; Cobo S; Fize J; Baldinozzi G; Schwartz W; Reymermier M; Pereira A; Fontecave M; Artero V; Laberty-Robert C; Sanchez C
    Phys Chem Chem Phys; 2012 Oct; 14(38):13224-32. PubMed ID: 22911106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrochemical water oxidation by cobalt catalyst ("Co-Pi")/alpha-Fe(2)O(3) composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck.
    Zhong DK; Gamelin DR
    J Am Chem Soc; 2010 Mar; 132(12):4202-7. PubMed ID: 20201513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach.
    Sivula K; Zboril R; Le Formal F; Robert R; Weidenkaff A; Tucek J; Frydrych J; Grätzel M
    J Am Chem Soc; 2010 Jun; 132(21):7436-44. PubMed ID: 20443599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile synthesis of highly photoactive α-Fe₂O₃-based films for water oxidation.
    Wang G; Ling Y; Wheeler DA; George KE; Horsley K; Heske C; Zhang JZ; Li Y
    Nano Lett; 2011 Aug; 11(8):3503-9. PubMed ID: 21766825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetite colloidal nanocrystals: a facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting.
    Gonçalves RH; Lima BH; Leite ER
    J Am Chem Soc; 2011 Apr; 133(15):6012-9. PubMed ID: 21443221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting.
    Lim YF; Chua CS; Lee CJ; Chi D
    Phys Chem Chem Phys; 2014 Dec; 16(47):25928-34. PubMed ID: 25355367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting.
    Shi X; Zhang K; Shin K; Moon JH; Lee TW; Park JH
    Phys Chem Chem Phys; 2013 Jul; 15(28):11717-22. PubMed ID: 23752489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.
    Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface aspects of sol-gel derived hematite films for the photoelectrochemical oxidation of water.
    Herrmann-Geppert I; Bogdanoff P; Radnik J; Fengler S; Dittrich T; Fiechter S
    Phys Chem Chem Phys; 2013 Feb; 15(5):1389-98. PubMed ID: 23247669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes.
    Mei B; Permyakova AA; Frydendal R; Bae D; Pedersen T; Malacrida P; Hansen O; Stephens IE; Vesborg PC; Seger B; Chorkendorff I
    J Phys Chem Lett; 2014 Oct; 5(20):3456-61. PubMed ID: 26278593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting.
    Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W
    Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting.
    Fu L; Yu H; Li Y; Zhang C; Wang X; Shao Z; Yi B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4284-90. PubMed ID: 24451918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation.
    Hahn NT; Ye H; Flaherty DW; Bard AJ; Mullins CB
    ACS Nano; 2010 Apr; 4(4):1977-86. PubMed ID: 20361756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperature.
    Cho ES; Kang MJ; Kang YS
    Phys Chem Chem Phys; 2015 Jun; 17(24):16145-50. PubMed ID: 26032403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse opal structured α-Fe2O3 on graphene thin films: enhanced photo-assisted water splitting.
    Zhang K; Shi X; Kim JK; Lee JS; Park JH
    Nanoscale; 2013 Mar; 5(5):1939-44. PubMed ID: 23358521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PRED treatment mediated stable and efficient water oxidation performance of the Fe2O3 nano-coral structure.
    Shinde PS; Lee HH; Lee SY; Lee YM; Jang JS
    Nanoscale; 2015 Sep; 7(36):14906-13. PubMed ID: 26300305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the oxidation and decomposition of CO on Au/alpha-Fe2O3 and on alpha-Fe2O3 by coupled TG-FTIR.
    Zhong Z; Highfield J; Lin M; Teo J; Han YF
    Langmuir; 2008 Aug; 24(16):8576-82. PubMed ID: 18605709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes.
    Zhong DK; Sun J; Inumaru H; Gamelin DR
    J Am Chem Soc; 2009 May; 131(17):6086-7. PubMed ID: 19354283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.