These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22912833)

  • 1. Reduced slow-wave rebound during daytime recovery sleep in middle-aged subjects.
    Lafortune M; Gagnon JF; Latreille V; Vandewalle G; Martin N; Filipini D; Doyon J; Carrier J
    PLoS One; 2012; 7(8):e43224. PubMed ID: 22912833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep slow wave changes during the middle years of life.
    Carrier J; Viens I; Poirier G; Robillard R; Lafortune M; Vandewalle G; Martin N; Barakat M; Paquet J; Filipini D
    Eur J Neurosci; 2011 Feb; 33(4):758-66. PubMed ID: 21226772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of caffeine on daytime recovery sleep: A double challenge to the sleep-wake cycle in aging.
    Carrier J; Paquet J; Fernandez-Bolanos M; Girouard L; Roy J; Selmaoui B; Filipini D
    Sleep Med; 2009 Oct; 10(9):1016-24. PubMed ID: 19342294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a 25-h sleep deprivation on daytime sleep in the middle-aged.
    Gaudreau H; Morettini J; Lavoie HB; Carrier J
    Neurobiol Aging; 2001; 22(3):461-8. PubMed ID: 11378253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related reduction in daytime sleep propensity and nocturnal slow wave sleep.
    Dijk DJ; Groeger JA; Stanley N; Deacon S
    Sleep; 2010 Feb; 33(2):211-23. PubMed ID: 20175405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociating effects of global SWS disruption and healthy aging on waking performance and daytime sleepiness.
    Groeger JA; Stanley N; Deacon S; Dijk DJ
    Sleep; 2014 Jun; 37(6):1127-42. PubMed ID: 24882908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuation of waking electroencephalogram and subjective alertness during a 25-hour sleep-deprivation episode in young and middle-aged subjects.
    Drapeau C; Carrier J
    Sleep; 2004 Feb; 27(1):55-60. PubMed ID: 14998238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morning and evening-type differences in slow waves during NREM sleep reveal both trait and state-dependent phenotypes.
    Mongrain V; Carrier J; Paquet J; Bélanger-Nelson E; Dumont M
    PLoS One; 2011; 6(8):e22679. PubMed ID: 21829643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of anesthesia on the response to sleep deprivation.
    Nelson AB; Faraguna U; Tononi G; Cirelli C
    Sleep; 2010 Dec; 33(12):1659-67. PubMed ID: 21120128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat.
    Vyazovskiy VV; Riedner BA; Cirelli C; Tononi G
    Sleep; 2007 Dec; 30(12):1631-42. PubMed ID: 18246973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac autonomic modulation and sleepiness: physiological consequences of sleep deprivation due to 40 h of prolonged wakefulness.
    Glos M; Fietze I; Blau A; Baumann G; Penzel T
    Physiol Behav; 2014 Feb; 125():45-53. PubMed ID: 24291386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans.
    Cajochen C; Foy R; Dijk DJ
    Sleep Res Online; 1999; 2(3):65-9. PubMed ID: 11382884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related changes in sleep spindles characteristics during daytime recovery following a 25-hour sleep deprivation.
    Rosinvil T; Lafortune M; Sekerovic Z; Bouchard M; Dubé J; Latulipe-Loiselle A; Martin N; Lina JM; Carrier J
    Front Hum Neurosci; 2015; 9():323. PubMed ID: 26089788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of slow-wave sleep deprivation on topographical distribution of spindles.
    De Gennaro L; Ferrara M; Bertini M
    Behav Brain Res; 2000 Nov; 116(1):55-9. PubMed ID: 11090885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase Synchronization Analysis of Natural Wake and Sleep States in Healthy Individuals Using a Novel Ensemble Phase Synchronization Measure.
    Nayak CS; Bhowmik A; Prasad PD; Pati S; Choudhury KK; Majumdar KK
    J Clin Neurophysiol; 2017 Jan; 34(1):77-83. PubMed ID: 27490322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Daytime microsleeps during 7 days of sleep restriction followed by 13 days of sleep recovery in healthy young adults.
    Bougard C; Gomez-Merino D; Rabat A; Arnal P; Van Beers P; Guillard M; Léger D; Sauvet F; Chennaoui M
    Conscious Cogn; 2018 May; 61():1-12. PubMed ID: 29631192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain white matter damage and its association with neuronal synchrony during sleep.
    Sanchez E; El-Khatib H; Arbour C; Bedetti C; Blais H; Marcotte K; Baril AA; Descoteaux M; Gilbert D; Carrier J; Gosselin N
    Brain; 2019 Mar; 142(3):674-687. PubMed ID: 30698667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG sleep spectra in older adults across all circadian phases during NREM sleep.
    Münch M; Silva EJ; Ronda JM; Czeisler CA; Duffy JF
    Sleep; 2010 Mar; 33(3):389-401. PubMed ID: 20337198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends in electroencephalographic synchronization across nonrapid eye movement sleep in infants.
    Bes F; Fagioli I; Peirano P; Schulz H; Salzarulo P
    Sleep; 1994 Jun; 17(4):323-8. PubMed ID: 7973315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NREM sleep EEG slow waves in autistic and typically developing children: Morphological characteristics and scalp distribution.
    Lehoux T; Carrier J; Godbout R
    J Sleep Res; 2019 Aug; 28(4):e12775. PubMed ID: 30311707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.