These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22912867)

  • 1. Phosphoproteome of human glioblastoma initiating cells reveals novel signaling regulators encoded by the transcriptome.
    Kozuka-Hata H; Nasu-Nishimura Y; Koyama-Nasu R; Ao-Kondo H; Tsumoto K; Akiyama T; Oyama M
    PLoS One; 2012; 7(8):e43398. PubMed ID: 22912867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative phosphoproteomic analysis of the STAT3/IL-6/HIF1alpha signaling network: an initial study in GSC11 glioblastoma stem cells.
    Nilsson CL; Dillon R; Devakumar A; Shi SD; Greig M; Rogers JC; Krastins B; Rosenblatt M; Kilmer G; Major M; Kaboord BJ; Sarracino D; Rezai T; Prakash A; Lopez M; Ji Y; Priebe W; Lang FF; Colman H; Conrad CA
    J Proteome Res; 2010 Jan; 9(1):430-43. PubMed ID: 19899826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis.
    Han G; Ye M; Liu H; Song C; Sun D; Wu Y; Jiang X; Chen R; Wang C; Wang L; Zou H
    Electrophoresis; 2010 Mar; 31(6):1080-9. PubMed ID: 20166139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative Network Analysis Combined with Quantitative Phosphoproteomics Reveals Transforming Growth Factor-beta Receptor type-2 (TGFBR2) as a Novel Regulator of Glioblastoma Stem Cell Properties.
    Narushima Y; Kozuka-Hata H; Koyama-Nasu R; Tsumoto K; Inoue J; Akiyama T; Oyama M
    Mol Cell Proteomics; 2016 Mar; 15(3):1017-31. PubMed ID: 26670566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the phosphoproteome of the multicellular bacterium Streptomyces coelicolor A3(2) by protein/peptide fractionation, phosphopeptide enrichment and high-accuracy mass spectrometry.
    Parker JL; Jones AM; Serazetdinova L; Saalbach G; Bibb MJ; Naldrett MJ
    Proteomics; 2010 Jul; 10(13):2486-97. PubMed ID: 20432484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells.
    Bridon G; Bonneil E; Muratore-Schroeder T; Caron-Lizotte O; Thibault P
    J Proteome Res; 2012 Feb; 11(2):927-40. PubMed ID: 22059388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical strategies in mass spectrometry-based phosphoproteomics.
    Rosenqvist H; Ye J; Jensen ON
    Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the phosphoproteome in androgen-repressed human prostate cancer cells by Fourier transform ion cyclotron resonance mass spectrometry.
    Wang X; Stewart PA; Cao Q; Sang QX; Chung LW; Emmett MR; Marshall AG
    J Proteome Res; 2011 Sep; 10(9):3920-8. PubMed ID: 21786837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoproteome Analysis in Immune Cell Signaling.
    Rathore D; Nita-Lazar A
    Curr Protoc Immunol; 2020 Sep; 130(1):e105. PubMed ID: 32936995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative phosphoproteomics of transforming growth factor-β signaling in colon cancer cells.
    Ali NA; Molloy MP
    Proteomics; 2011 Aug; 11(16):3390-401. PubMed ID: 21751366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined enzymatic and data mining approaches for comprehensive phosphoproteome analyses: application to cell signaling events of interferon-gamma-stimulated macrophages.
    Marcantonio M; Trost M; Courcelles M; Desjardins M; Thibault P
    Mol Cell Proteomics; 2008 Apr; 7(4):645-60. PubMed ID: 18006492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics.
    Wu X; Tian L; Li J; Zhang Y; Han V; Li Y; Xu X; Li H; Chen X; Chen J; Jin W; Xie Y; Han J; Zhong CQ
    Mol Cell Proteomics; 2012 Dec; 11(12):1640-51. PubMed ID: 22942356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative proteome and phosphoproteome analysis of human pluripotent stem cells.
    Muñoz J; Heck AJ
    Methods Mol Biol; 2011; 767():297-312. PubMed ID: 21822884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iPhos: a toolkit to streamline the alkaline phosphatase-assisted comprehensive LC-MS phosphoproteome investigation.
    Yang TH; Chang HT; Hsiao ES; Sun JL; Wang CC; Wu HY; Liao PC; Wu WS
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S10. PubMed ID: 25521246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics study reveals cross-talk between Rho guanidine nucleotide dissociation inhibitor 1 post-translational modifications in epidermal growth factor stimulated fibroblasts.
    Guerrera IC; Keep NH; Godovac-Zimmermann J
    J Proteome Res; 2007 Jul; 6(7):2623-30. PubMed ID: 17506542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refined phosphopeptide enrichment by phosphate additive and the analysis of human brain phosphoproteome.
    Tan H; Wu Z; Wang H; Bai B; Li Y; Wang X; Zhai B; Beach TG; Peng J
    Proteomics; 2015 Jan; 15(2-3):500-7. PubMed ID: 25307156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry.
    Swaney DL; Wenger CD; Thomson JA; Coon JJ
    Proc Natl Acad Sci U S A; 2009 Jan; 106(4):995-1000. PubMed ID: 19144917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins.
    Ge R; Sun X; Xiao C; Yin X; Shan W; Chen Z; He QY
    Proteomics; 2011 Apr; 11(8):1449-61. PubMed ID: 21360674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y
    J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.