BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 22913101)

  • 1. Doppler ultrasound-based measurement of tendon velocity and displacement for application toward detecting user-intended motion.
    Stegman KJ; Park EJ; Dechev N
    Proc Inst Mech Eng H; 2012 Jul; 226(7):536-47. PubMed ID: 22913101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo estimation of flexor digitorum superficialis tendon displacement with speckle tracking on 2-D ultrasound images using Laplacian, Gaussian and Rayleigh techniques.
    Stegman KJ; Djurickovic S; Dechev N
    Ultrasound Med Biol; 2014 Mar; 40(3):568-82. PubMed ID: 24342915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A feasibility study for measuring accurate tendon displacements using an audio-based Fourier analysis of pulsed-wave Doppler ultrasound signals.
    Stegman KJ; Podhorodeski RP; Park EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1363-6. PubMed ID: 19964755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tendon-motion tracking in an ultrasound image sequence using optical-flow-based block matching.
    Chuang BI; Hsu JH; Kuo LC; Jou IM; Su FC; Sun YN
    Biomed Eng Online; 2017 Apr; 16(1):47. PubMed ID: 28427411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a novel Kalman filter based block matching method to ultrasound images for hand tendon displacement estimation.
    Lai TY; Chen HI; Shih CC; Kuo LC; Hsu HY; Huang CC
    Med Phys; 2016 Jan; 43(1):148. PubMed ID: 26745907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doppler ultrasound signals simulation from vessels with various stenosis degrees.
    Fang X; Wang Y; Wang W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e173-7. PubMed ID: 16844156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of tendon velocities using vector tissue Doppler imaging: a feasibility study.
    Eranki A; Bellini L; Prosser L; Stanley C; Bland D; Alter K; Damiano D; Sikdar S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5310-3. PubMed ID: 21096066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer vision elastography: speckle adaptive motion estimation for elastography using ultrasound sequences.
    Revell J; Mirmehdi M; McNally D
    IEEE Trans Med Imaging; 2005 Jun; 24(6):755-66. PubMed ID: 15957599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of ultrasound speckle tracking to quantify tendon displacement.
    Korstanje JW; Selles RW; Stam HJ; Hovius SE; Bosch JG
    J Biomech; 2010 May; 43(7):1373-9. PubMed ID: 20152983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of mechanical properties of rat tibialis anterior tendon evaluated using two different approaches.
    Wu JZ; Brumfield A; Miller GR; Metheny R; Cutlip RG
    Biomed Mater Eng; 2004; 14(1):13-22. PubMed ID: 14757949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coded ultrasound for blood flow estimation using subband processing.
    Gran F; Udesen J; Nielsen MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2211-20. PubMed ID: 18986869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axial speed of sound is related to tendon's nonlinear elasticity.
    Vergari C; Ravary-Plumioën B; Evrard D; Laugier P; Mitton D; Pourcelot P; Crevier-Denoix N
    J Biomech; 2012 Jan; 45(2):263-8. PubMed ID: 22078274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonographic measurement of tendon displacement caused by active force generation in the psoas major muscle.
    Matsubayashi T; Kubo J; Matsuo A; Kobayashi K; Ishii N
    J Physiol Sci; 2008 Oct; 58(5):323-32. PubMed ID: 18840323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.
    Park DW; Kruger GH; Rubin JM; Hamilton J; Gottschalk P; Dodde RE; Shih AJ; Weitzel WF
    J Ultrasound Med; 2013 Oct; 32(10):1815-30. PubMed ID: 24065263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate blood peak velocity estimation using spectral models and vector doppler.
    Ricci S; Vilkomerson D; Matera R; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):686-96. PubMed ID: 25881346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproducibility of a non-invasive ultrasonic technique of tendon force measurement, determined in vitro in equine superficial digital flexor tendons.
    Crevier-Denoix N; Ravary-Plumioën B; Evrard D; Pourcelot P
    J Biomech; 2009 Sep; 42(13):2210-3. PubMed ID: 19647261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tendon and nerve excursion in the carpal tunnel in healthy and CTD wrists.
    Lopes MM; Lawson W; Scott T; Keir PJ
    Clin Biomech (Bristol, Avon); 2011 Nov; 26(9):930-6. PubMed ID: 21550703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An arterial wall motion test phantom for the evaluation of wall motion software.
    Hammer SJ; Dineley J; Easson WJ; Hoskins PR
    Ultrasound Med Biol; 2007 Sep; 33(9):1504-11. PubMed ID: 17587485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of arterial distension based on continuous wave Doppler ultrasound with an improved Hilbert-Huang processing.
    Zhang Y; Su N; Li Z; Gou Z; Chen Q; Zhang Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):203-13. PubMed ID: 20040447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise reduction in Doppler ultrasound signals using an adaptive decomposition algorithm.
    Zhang Y; Wang L; Gao Y; Chen J; Shi X
    Med Eng Phys; 2007 Jul; 29(6):699-707. PubMed ID: 16996774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.