BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 22913103)

  • 1. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.
    Hamed A; Masamune K; Tse ZT; Lamperth M; Dohi T
    Proc Inst Mech Eng H; 2012 Jul; 226(7):565-75. PubMed ID: 22913103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applying tactile sensing with piezoelectric materials for minimally invasive surgery and magnetic-resonance-guided interventions.
    Hamed AM; Tse ZT; Young I; Davies BL; Lampérth M
    Proc Inst Mech Eng H; 2009 Jan; 223(1):99-110. PubMed ID: 19239071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery.
    Liu H; Puangmali P; Zbyszewski D; Elhage O; Dasgupta P; Dai JS; Seneviratne L; Althoefer K
    Proc Inst Mech Eng H; 2010; 224(6):751-63. PubMed ID: 20608492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovative optical microsystem for static and dynamic tissue diagnosis in minimally invasive surgical operations.
    Ahmadi R; Packirisamy M; Dargahi J
    J Biomed Opt; 2012 Aug; 17(8):081416. PubMed ID: 23224177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A haptic unit designed for magnetic-resonance-guided biopsy.
    Tse ZT; Elhawary H; Rea M; Young I; Davis BL; Lamperth M
    Proc Inst Mech Eng H; 2009 Feb; 223(2):159-72. PubMed ID: 19278193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device.
    Su H; Shang W; Li G; Patel N; Fischer GS
    Ann Biomed Eng; 2017 Aug; 45(8):1917-1928. PubMed ID: 28447178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of force and resonance sensors used in the clinical study of tissue properties.
    Yousuf MA; Asiyanbola BA
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1333-40. PubMed ID: 24048077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization.
    Talasaz A; Patel RV
    IEEE Trans Haptics; 2013; 6(2):217-28. PubMed ID: 24808305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of a thin-film capacitive force sensor array for tactile feedback in robotic surgery.
    Paydar OH; Wottawa CR; Fan RE; Dutson EP; Grundfest WS; Culjat MO; Candler RN
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2355-8. PubMed ID: 23366397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of an MRI-compatible robotic stereotactic device for minimally invasive interventions in the breast.
    Larson BT; Erdman AG; Tsekos NV; Yacoub E; Tsekos PV; Koutlas IG
    J Biomech Eng; 2004 Aug; 126(4):458-65. PubMed ID: 15543863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discriminating contact in lumen with a moving flexible digit using fibre Bragg grating sensing elements.
    Tam B; Ma X; Webb DJ; Holding DJ; Brett PN
    Proc Inst Mech Eng H; 2010; 224(6):765-74. PubMed ID: 20608493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A micro-fabricated force sensor using an all thin film piezoelectric active sensor.
    Lee J; Choi W; Yoo YK; Hwang KS; Lee SM; Kang S; Kim J; Lee JH
    Sensors (Basel); 2014 Nov; 14(12):22199-207. PubMed ID: 25429407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prototype tactile feedback system for examination by skin touch.
    Lee O; Lee K; Oh C; Kim K; Kim M
    Skin Res Technol; 2014 Aug; 20(3):307-14. PubMed ID: 24267404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI compatibility evaluation of a piezoelectric actuator system for a neural interventional robot.
    Wang Y; Cole GA; Su H; Pilitsis JG; Fischer GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6072-5. PubMed ID: 19964890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A prototype manipulator for magnetic resonance-guided interventions inside standard cylindrical magnetic resonance imaging scanners.
    Tsekos NV; Ozcan A; Christoforou E
    J Biomech Eng; 2005 Nov; 127(6):972-80. PubMed ID: 16438235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Network-Based Minimally Invasive VR Surgery Simulator.
    Tagawa K; Tanaka HT; Kurumi Y; Komori M; Morikawa S
    Stud Health Technol Inform; 2016; 220():403-6. PubMed ID: 27046613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An autoclavable wireless palpation instrument for minimally invasive surgery.
    Naidu AS; Escoto A; Fahmy O; Patel RV; Naish MD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6489-6492. PubMed ID: 28269733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel airway device with tactile sensing capabilities for verifying correct endotracheal tube placement.
    Goethals P; Chaobal H; Reynaerts D; Schaner D
    J Clin Monit Comput; 2014 Apr; 28(2):179-85. PubMed ID: 24222343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.