These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22913341)

  • 1. Interconnected V2O5 nanoporous network for high-performance supercapacitors.
    Saravanakumar B; Purushothaman KK; Muralidharan G
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4484-90. PubMed ID: 22913341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries.
    Yu H; Rui X; Tan H; Chen J; Huang X; Xu C; Liu W; Yu DY; Hng HH; Hoster HE; Yan Q
    Nanoscale; 2013 Jun; 5(11):4937-43. PubMed ID: 23629762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vanadium pentoxide nanochains for high-performance electrochemical supercapacitors.
    Umeshbabu E; Ranga Rao G
    J Colloid Interface Sci; 2016 Jun; 472():210-9. PubMed ID: 27038783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layer by layer assembly of ultrathin V₂O₅ anchored MWCNTs and graphene on textile fabrics for fabrication of high energy density flexible supercapacitor electrodes.
    Shakir I; Ali Z; Bae J; Park J; Kang DJ
    Nanoscale; 2014 Apr; 6(8):4125-30. PubMed ID: 24604248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors.
    Zhu J; Cao L; Wu Y; Gong Y; Liu Z; Hoster HE; Zhang Y; Zhang S; Yang S; Yan Q; Ajayan PM; Vajtai R
    Nano Lett; 2013; 13(11):5408-13. PubMed ID: 24148090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-cost synthesis of hierarchical V2O5 microspheres as high-performance cathode for lithium-ion batteries.
    Shao J; Li X; Wan Z; Zhang L; Ding Y; Zhang L; Qu Q; Zheng H
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7671-5. PubMed ID: 23915302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors.
    Wang G; Lu X; Ling Y; Zhai T; Wang H; Tong Y; Li Y
    ACS Nano; 2012 Nov; 6(11):10296-302. PubMed ID: 23050855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors.
    Li M; Sun G; Yin P; Ruan C; Ai K
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11462-70. PubMed ID: 24138545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved elevated temperature performance of Al-intercalated V(2)O(5) electrospun nanofibers for lithium-ion batteries.
    Cheah YL; Aravindan V; Madhavi S
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3270-7. PubMed ID: 22616641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of vanadium doping on the electrochemical performance of nickel oxide in supercapacitors.
    Park HW; Na BK; Cho BW; Park SM; Roh KC
    Phys Chem Chem Phys; 2013 Oct; 15(40):17626-35. PubMed ID: 24036916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-grown oxy-hydroxide@ nanoporous metal electrode for high-performance supercapacitors.
    Kang J; Hirata A; Qiu HJ; Chen L; Ge X; Fujita T; Chen M
    Adv Mater; 2014 Jan; 26(2):269-72. PubMed ID: 24129961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Storage of potassium ions in layered vanadium pentoxide nanofiber electrodes for aqueous pseudocapacitors.
    Yeager MP; Du W; Bishop B; Sullivan M; Xu W; Su D; Senanayake SD; Hanson J; Teng X
    ChemSusChem; 2013 Dec; 6(12):2231-5. PubMed ID: 24124048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte.
    Salunkhe RR; Young C; Tang J; Takei T; Ide Y; Kobayashi N; Yamauchi Y
    Chem Commun (Camb); 2016 Apr; 52(26):4764-7. PubMed ID: 26928244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dioxythiophene-based polymer electrodes for supercapacitor modules.
    Liu DY; Reynolds JR
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3586-93. PubMed ID: 21090685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors.
    Moosavifard SE; El-Kady MF; Rahmanifar MS; Kaner RB; Mousavi MF
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4851-60. PubMed ID: 25671715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant Effects on the Morphology and Pseudocapacitive Behavior of V2 O5 ⋅H2 O.
    Qian A; Zhuo K; Shin MS; Chun WW; Choi BN; Chung CH
    ChemSusChem; 2015 Jul; 8(14):2399-406. PubMed ID: 25711651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical analysis based on nanoporous structures.
    Park S; Kim HC; Chung TD
    Analyst; 2012 Sep; 137(17):3891-903. PubMed ID: 22774000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature on the capacitance of carbon nanotube supercapacitors.
    Masarapu C; Zeng HF; Hung KH; Wei B
    ACS Nano; 2009 Aug; 3(8):2199-206. PubMed ID: 19583250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent-Free Mechanochemical Synthesis of Nitrogen-Doped Nanoporous Carbon for Electrochemical Energy Storage.
    Schneidermann C; Jäckel N; Oswald S; Giebeler L; Presser V; Borchardt L
    ChemSusChem; 2017 Jun; 10(11):2416-2424. PubMed ID: 28436604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries.
    Rui X; Zhu J; Sim D; Xu C; Zeng Y; Hng HH; Lim TM; Yan Q
    Nanoscale; 2011 Nov; 3(11):4752-8. PubMed ID: 21989744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.