These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22913486)

  • 1. Computational simulation of the effects of oxygen on the electronic states of hydrogenated 3C-porous SiC.
    Trejo A; Calvino M; Ramos E; Cruz-Irisson M
    Nanoscale Res Lett; 2012 Aug; 7(1):471. PubMed ID: 22913486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab-initio study of anisotropic and chemical surface modifications of β-SiC nanowires.
    Trejo A; Cuevas JL; Salazar F; Carvajal E; Cruz-Irisson M
    J Mol Model; 2013 May; 19(5):2043-8. PubMed ID: 23086456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures and the electronic properties of silicon-rich silicon carbide materials by first principle calculations.
    Alkhaldi ND; Barman SK; Huda MN
    Heliyon; 2019 Nov; 5(11):e02908. PubMed ID: 31844763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of oxygen on the surface passivation of InP nanowires.
    Dionízio Moreira M; Venezuela P; Schmidt TM
    Nanotechnology; 2008 Feb; 19(6):065203. PubMed ID: 21730696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of the hydrosilylation reaction of alkenes at porous silicon: experimental and computational deuterium labeling studies.
    de Smet LC; Zuilhof H; Sudhölter EJ; Lie LH; Houlton A; Horrocks BR
    J Phys Chem B; 2005 Jun; 109(24):12020-31. PubMed ID: 16852483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium effect on the electronic properties of porous silicon for energy storage applications: a DFT study.
    González I; Sosa AN; Trejo A; Calvino M; Miranda A; Cruz-Irisson M
    Dalton Trans; 2018 Jun; 47(22):7505-7514. PubMed ID: 29789836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous Properties of the Dislocation-Free Interface between Si(111) Substrate and 3C-SiC(111) Epitaxial Layer.
    Kukushkin SA; Osipov AV
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33375252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What a difference a bond makes: the structural, chemical, and physical properties of methyl-terminated Si(111) surfaces.
    Wong KT; Lewis NS
    Acc Chem Res; 2014 Oct; 47(10):3037-44. PubMed ID: 25192516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab Initio Study of Octane Moiety Adsorption on H- and Cl-Functionalized Silicon Nanowires.
    Ferrucci B; Buonocore F; Giusepponi S; Shalabny A; Bashouti MY; Celino M
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical study of surface lithium effects on the [111] SiC nanowires as anode materials.
    Tang X; Yan W; Gao T; Wang J; Liu Y; Qin X
    J Mol Model; 2024 Jul; 30(8):251. PubMed ID: 38967703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid density functional study of zigzag SiC nanotubes.
    Alam KM; Ray AK
    Nanotechnology; 2007 Dec; 18(49):495706. PubMed ID: 20442487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation.
    Zhao M; Xia Y; Zhang RQ; Lee ST
    J Chem Phys; 2005 Jun; 122(21):214707. PubMed ID: 15974762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-Principles Study of the Band Gap Structure of Oxygen-Passivated Silicon Nanonets.
    Lin L; Li D; Feng J
    Nanoscale Res Lett; 2009 Feb; 4(5):409-413. PubMed ID: 20596312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations.
    Monastyrskii LS; Boyko YV; Sokolovskii BS; Potashnyk VY
    Nanoscale Res Lett; 2016 Dec; 11(1):25. PubMed ID: 26768147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of surface structures on 3C-SiC nanocrystals with hydrogen and hydroxyl bonding by photoluminescence.
    Wu XL; Xiong SJ; Zhu J; Wang J; Shen JC; Chu PK
    Nano Lett; 2009 Dec; 9(12):4053-60. PubMed ID: 19894694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural stability and electronic properties of alkaline-earth metal induced Si(111)-(3 × 2) surfaces.
    Chai JS; Li ZZ; Xu LF; Wang JT
    Phys Chem Chem Phys; 2018 Oct; 20(39):25235-25239. PubMed ID: 30264069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of Electronic Structure of Armchair MoS
    Zhang L; Wan L; Yu Y; Wang B; Xu F; Wei Y; Zhao Y
    J Phys Chem C Nanomater Interfaces; 2015; 119(38):22164-22171. PubMed ID: 26331336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room temperature ferromagnetism in Mn-doped silicon carbide from first-principles calculations.
    Los A; Los V
    J Phys Condens Matter; 2010 Jun; 22(24):245801. PubMed ID: 21393790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interstitial sodium and lithium doping effects on the electronic and mechanical properties of silicon nanowires: a DFT study.
    Salazar F; Trejo-Baños A; Miranda A; Pérez LA; Cruz-Irisson M
    J Mol Model; 2019 Nov; 25(11):338. PubMed ID: 31705205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.