These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 22913613)
1. Chloroplast protection in plum pox virus-infected peach plants by L-2-oxo-4-thiazolidine-carboxylic acid treatments: effect in the proteome. Clemente-Moreno MJ; Díaz-Vivancos P; Rubio M; Fernández-García N; Hernández JA Plant Cell Environ; 2013 Mar; 36(3):640-54. PubMed ID: 22913613 [TBL] [Abstract][Full Text] [Related]
2. Benzothiadiazole and l-2-oxothiazolidine-4-carboxylic acid reduce the severity of Sharka symptoms in pea leaves: effect on antioxidative metabolism at the subcellular level. Clemente-Moreno MJ; Díaz-Vivancos P; Barba-Espín G; Hernández JA Plant Biol (Stuttg); 2010 Jan; 12(1):88-97. PubMed ID: 20653891 [TBL] [Abstract][Full Text] [Related]
3. Plant growth stimulation in Prunus species plantlets by BTH or OTC treatments under in vitro conditions. Clemente-Moreno MJ; Díaz-Vivancos P; Piqueras A; Hernández JA J Plant Physiol; 2012 Jul; 169(11):1074-83. PubMed ID: 22595304 [TBL] [Abstract][Full Text] [Related]
4. The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection. Diaz-Vivancos P; Rubio M; Mesonero V; Periago PM; Barceló AR; Martínez-Gómez P; Hernández JA J Exp Bot; 2006; 57(14):3813-24. PubMed ID: 17043083 [TBL] [Abstract][Full Text] [Related]
5. Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. Díaz-Vivancos P; Clemente-Moreno MJ; Rubio M; Olmos E; García JA; Martínez-Gómez P; Hernández JA J Exp Bot; 2008; 59(8):2147-60. PubMed ID: 18535298 [TBL] [Abstract][Full Text] [Related]
6. Photosynthetic and Stress Responsive Proteins Are Altered More Effectively in Nicotiana benthamiana Infected with Plum pox virus Aggressive PPV-CR versus Mild PPV-C Cherry-Adapted Isolates. Nováková S; Danchenko M; Skultety L; Fialová I; Lešková A; Beke G; Flores-Ramírez G; Glasa M J Proteome Res; 2018 Sep; 17(9):3114-3127. PubMed ID: 30084641 [TBL] [Abstract][Full Text] [Related]
7. Phytohormone Signaling of the Resistance to Plum pox virus (PPV, Sharka Disease) Induced by Almond (Prunus dulcis (Miller) Webb) Grafting to Peach (P. persica L. Batsch). Dehkordi AN; Rubio M; Babaeian N; Albacete A; Martínez-Gómez P Viruses; 2018 May; 10(5):. PubMed ID: 29751564 [No Abstract] [Full Text] [Related]
8. Application of GFP-tagged Plum pox virus to study Prunus-PPV interactions at the whole plant and cellular levels. Lansac M; Eyquard JP; Salvador B; Garcia JA; Le Gall O; Decroocq V; Schurdi-Levraud Escalettes V J Virol Methods; 2005 Nov; 129(2):125-33. PubMed ID: 15993953 [TBL] [Abstract][Full Text] [Related]
9. Sharka: how do plants respond to Plum pox virus infection? Clemente-Moreno MJ; Hernández JA; Diaz-Vivancos P J Exp Bot; 2015 Jan; 66(1):25-35. PubMed ID: 25336685 [TBL] [Abstract][Full Text] [Related]
10. Sugars and organic acids in plum fruit affected by Plum pox virus. Usenik V; Marn MV J Sci Food Agric; 2017 May; 97(7):2154-2158. PubMed ID: 27614092 [TBL] [Abstract][Full Text] [Related]
11. Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using RNA-Seq. Rubio M; Rodríguez-Moreno L; Ballester AR; de Moura MC; Bonghi C; Candresse T; Martínez-Gómez P Mol Plant Pathol; 2015 Feb; 16(2):164-76. PubMed ID: 24989162 [TBL] [Abstract][Full Text] [Related]
12. Silencing of one copy of the translation initiation factor eIFiso4G in Japanese plum (Prunus salicina) impacts susceptibility to Plum pox virus (PPV) and small RNA production. Rubio J; Sánchez E; Tricon D; Montes C; Eyquard JP; Chague A; Aguirre C; Prieto H; Decroocq V BMC Plant Biol; 2019 Oct; 19(1):440. PubMed ID: 31640557 [TBL] [Abstract][Full Text] [Related]
14. Viral Reservoir Capacity of Wild Collum TD; Stone AL; Sherman DJ; Damsteegt VD; Schneider WL; Rogers EE Plant Dis; 2022 Jan; 106(1):101-106. PubMed ID: 34293916 [TBL] [Abstract][Full Text] [Related]
15. Plum pox virus accumulates mutations in different genome parts during a long-term maintenance in Prunus host plants and passage in Nicotiana benthamiana. Vozárová Z; Kamencayová M; Glasa M; Subr Z Acta Virol; 2013; 57(3):369-72. PubMed ID: 24020764 [TBL] [Abstract][Full Text] [Related]
16. The use of transgenic fruit trees as a resistance strategy for virus epidemics: the plum pox (sharka) model. Ravelonandro M; Scorza R; Callahan A; Levy L; Jacquet C; Monsion M; Damsteegt V Virus Res; 2000 Nov; 71(1-2):63-9. PubMed ID: 11137162 [TBL] [Abstract][Full Text] [Related]
17. Role of Myzus persicae (Hemiptera: Aphididae) and its secondary hosts in plum pox virus propagation. Manachini B; Casati P; Cinanni L; Bianco P J Econ Entomol; 2007 Aug; 100(4):1047-52. PubMed ID: 17849850 [TBL] [Abstract][Full Text] [Related]
18. Diverse amino acid changes at specific positions in the N-terminal region of the coat protein allow Plum pox virus to adapt to new hosts. Carbonell A; Maliogka VI; Pérez Jde J; Salvador B; León DS; García JA; Simón-Mateo C Mol Plant Microbe Interact; 2013 Oct; 26(10):1211-24. PubMed ID: 23745677 [TBL] [Abstract][Full Text] [Related]
19. Effect of Plum pox virus on chemical composition and fruit quality of plum. Usenik V; Kastelec D; Stampar F; Marn MV J Agric Food Chem; 2015 Jan; 63(1):51-60. PubMed ID: 25495040 [TBL] [Abstract][Full Text] [Related]
20. Rapid diagnostic detection of plum pox virus in Prunus plants by isothermal AmplifyRP(®) using reverse transcription-recombinase polymerase amplification. Zhang S; Ravelonandro M; Russell P; McOwen N; Briard P; Bohannon S; Vrient A J Virol Methods; 2014 Oct; 207():114-20. PubMed ID: 25010790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]