These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22913814)

  • 41. Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms.
    Sarkisova S; Patrauchan MA; Berglund D; Nivens DE; Franklin MJ
    J Bacteriol; 2005 Jul; 187(13):4327-37. PubMed ID: 15968041
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pneumococcal biofilms.
    Moscoso M; García E; López R
    Int Microbiol; 2009 Jun; 12(2):77-85. PubMed ID: 19784927
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms.
    Desmond P; Best JP; Morgenroth E; Derlon N
    Water Res; 2018 Apr; 132():211-221. PubMed ID: 29331909
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deletion of competence-induced genes over-expressed in biofilms caused transformation deficiencies in Streptococcus mutans.
    Eaton RE; Jacques NA
    Mol Oral Microbiol; 2010 Dec; 25(6):406-17. PubMed ID: 21040514
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development.
    Das T; Sehar S; Manefield M
    Environ Microbiol Rep; 2013 Dec; 5(6):778-86. PubMed ID: 24249286
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins.
    Paton JC; Andrew PW; Boulnois GJ; Mitchell TJ
    Annu Rev Microbiol; 1993; 47():89-115. PubMed ID: 7903033
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis.
    Kausmally L; Johnsborg O; Lunde M; Knutsen E; Håvarstein LS
    J Bacteriol; 2005 Jul; 187(13):4338-45. PubMed ID: 15968042
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Extracellular matrix influence in Streptococcus mutans gene expression in a cariogenic biofilm.
    Florez Salamanca EJ; Klein MI
    Mol Oral Microbiol; 2018 Apr; 33(2):181-193. PubMed ID: 29284195
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biofilms formed by
    Mello TP; Branquinha MH; Santos ALS
    Biofouling; 2020 Mar; 36(3):308-318. PubMed ID: 32401558
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phenotypic characterization of Streptococcus pneumoniae biofilm development.
    Allegrucci M; Hu FZ; Shen K; Hayes J; Ehrlich GD; Post JC; Sauer K
    J Bacteriol; 2006 Apr; 188(7):2325-35. PubMed ID: 16547018
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy.
    Ivleva NP; Wagner M; Horn H; Niessner R; Haisch C
    Anal Bioanal Chem; 2009 Jan; 393(1):197-206. PubMed ID: 18979092
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biofilm matrix-degrading enzymes.
    Kaplan JB
    Methods Mol Biol; 2014; 1147():203-13. PubMed ID: 24664835
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach.
    Wang H; Ding S; Wang G; Xu X; Zhou G
    Int J Food Microbiol; 2013 Nov; 167(3):293-302. PubMed ID: 24184607
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pneumococci in biofilms are non-invasive: implications on nasopharyngeal colonization.
    Gilley RP; Orihuela CJ
    Front Cell Infect Microbiol; 2014; 4():163. PubMed ID: 25414838
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Z-form extracellular DNA is a structural component of the bacterial biofilm matrix.
    Buzzo JR; Devaraj A; Gloag ES; Jurcisek JA; Robledo-Avila F; Kesler T; Wilbanks K; Mashburn-Warren L; Balu S; Wickham J; Novotny LA; Stoodley P; Bakaletz LO; Goodman SD
    Cell; 2021 Nov; 184(23):5740-5758.e17. PubMed ID: 34735796
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vancomycin tolerance in clinical and laboratory Streptococcus pneumoniae isolates depends on reduced enzyme activity of the major LytA autolysin or cooperation between CiaH histidine kinase and capsular polysaccharide.
    Moscoso M; Domenech M; García E
    Mol Microbiol; 2010 Aug; 77(4):1052-64. PubMed ID: 20598082
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In situ analysis of Bacillus licheniformis biofilms: amyloid-like polymers and eDNA are involved in the adherence and aggregation of the extracellular matrix.
    Randrianjatovo-Gbalou I; Rouquette P; Lefebvre D; Girbal-Neuhauser E; Marcato-Romain CE
    J Appl Microbiol; 2017 May; 122(5):1262-1274. PubMed ID: 28214364
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Visualization of microbiological processes underlying stress relaxation in Pseudomonas aeruginosa biofilms.
    Peterson BW; Busscher HJ; Sharma PK; van der Mei HC
    Microsc Microanal; 2014 Jun; 20(3):912-5. PubMed ID: 24621783
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of extracellular polymers on Staphylococcus epidermidis biofilm biomass and metabolic activity.
    Sousa C; Teixeira P; Oliveira R
    J Basic Microbiol; 2009 Aug; 49(4):363-70. PubMed ID: 19219902
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Murein Hydrolase LytF of Streptococcus sanguinis and the Ecological Consequences of Competence Development.
    Cullin N; Redanz S; Lampi KJ; Merritt J; Kreth J
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.