These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22913935)

  • 1. Independence of interrupted coarsening on initial system order: ion-beam nanopatterning of amorphous versus crystalline silicon targets.
    Muñoz-García J; Gago R; Cuerno R; Sánchez-García JA; Redondo-Cubero A; Castro M; Vázquez L
    J Phys Condens Matter; 2012 Sep; 24(37):375302. PubMed ID: 22913935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of morphology to surface transport in ion-beam-irradiated surfaces: normal incidence and rotating targets.
    Muñoz-García J; Cuerno R; Castro M
    J Phys Condens Matter; 2009 Jun; 21(22):224020. PubMed ID: 21715758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of metal co-deposition on silicon nanodot patterning dynamics during ion-beam sputtering.
    Gago R; Redondo-Cubero A; Palomares FJ; Vázquez L
    Nanotechnology; 2014 Oct; 25(41):415301. PubMed ID: 25248515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear ripple dynamics on amorphous surfaces patterned by ion beam sputtering.
    Muñoz-García J; Castro M; Cuerno R
    Phys Rev Lett; 2006 Mar; 96(8):086101. PubMed ID: 16606197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the surface morphology in self-organized ion beam nanopatterning of Si(001) via metal incorporation: from holes to dots.
    Sánchez-García JA; Vázquez L; Gago R; Redondo-Cubero A; Albella JM; Czigány Z
    Nanotechnology; 2008 Sep; 19(35):355306. PubMed ID: 21828846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of nanohole/nanodot patterns on Si(001) by ion beam sputtering with simultaneous metal incorporation.
    Sánchez-García JA; Gago R; Caillard R; Redondo-Cubero A; Martin-Gago JA; Palomares FJ; Fernández M; Vázquez L
    J Phys Condens Matter; 2009 Jun; 21(22):224009. PubMed ID: 21715747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface morphology of molybdenum silicide films upon low-energy ion beam sputtering.
    Gago R; Jaafar M; Palomares FJ
    J Phys Condens Matter; 2018 Jul; 30(26):264003. PubMed ID: 29762135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion beam sputtering nanopatterning of thin metal films: the synergism of kinetic self-organization and coarsening.
    Stepanova M; Dew SK
    J Phys Condens Matter; 2009 Jun; 21(22):224014. PubMed ID: 21715752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organised silicide nanodot patterning by medium-energy ion beam sputtering of Si(100): local correlation between the morphology and metal content.
    Redondo-Cubero A; Galiana B; Lorenz K; Palomares FJ; Bahena D; Ballesteros C; Hernandez-Calderón I; Vázquez L
    Nanotechnology; 2016 Nov; 27(44):444001. PubMed ID: 27670245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The morphology of amorphous SiO(2) surfaces during low energy ion sputtering.
    Keller A; Facsko S; Möller W
    J Phys Condens Matter; 2009 Dec; 21(49):495305. PubMed ID: 21836193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern-wavelength coarsening from topological dynamics in silicon nanofoams.
    Castro M; Cuerno R; García-Hernández MM; Vázquez L
    Phys Rev Lett; 2014 Mar; 112(9):094103. PubMed ID: 24655256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-induced nanopatterns on semiconductor surfaces investigated by grazing incidence x-ray scattering techniques.
    Carbone D; Biermanns A; Ziberi B; Frost F; Plantevin O; Pietsch U; Metzger TH
    J Phys Condens Matter; 2009 Jun; 21(22):224007. PubMed ID: 21715746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early stage of ripple formation on Ge(001) surfaces under near-normal ion beam sputtering.
    Carbone D; Alija A; Plantevin O; Gago R; Facsko S; Metzger TH
    Nanotechnology; 2008 Jan; 19(3):035304. PubMed ID: 21817567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing self-organized nanopatterns on Si by ion irradiation and metal co-deposition.
    Zhang K; Bobes O; Hofsäss H
    Nanotechnology; 2014 Feb; 25(8):085301. PubMed ID: 24492328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering.
    Ziberi B; Cornejo M; Frost F; Rauschenbach B
    J Phys Condens Matter; 2009 Jun; 21(22):224003. PubMed ID: 21715742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations of ripple pattern formation on Germanium surfaces using 100-keV Ar(+) ions.
    Sulania I; Agarwal D; Husain M; Avasthi DK
    Nanoscale Res Lett; 2015; 10():88. PubMed ID: 25852384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation and modeling of interrupted pattern coarsening: surface nanostructuring by ion erosion.
    Muñoz-García J; Gago R; Vázquez L; Sánchez-García JA; Cuerno R
    Phys Rev Lett; 2010 Jan; 104(2):026101. PubMed ID: 20366611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ripple formation on silicon by medium energy ion bombardment.
    Chini TK; Datta DP; Bhattacharyya SR
    J Phys Condens Matter; 2009 Jun; 21(22):224004. PubMed ID: 21715743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface orientation effects in crystalline-amorphous silicon interfaces.
    Nolan M; Legesse M; Fagas G
    Phys Chem Chem Phys; 2012 Nov; 14(43):15173-9. PubMed ID: 23038100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance to Helium Bubble Formation in Amorphous SiOC/Crystalline Fe Nanocomposite.
    Su Q; Wang T; Gigax J; Shao L; Nastasi M
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30597850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.