BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22914942)

  • 1. Reconstitution of the central nervous system during salamander tail regeneration from the implanted neurospheres.
    McHedlishvili L; Mazurov V; Tanaka EM
    Methods Mol Biol; 2012; 916():197-202. PubMed ID: 22914942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of the central and peripheral nervous system during salamander tail regeneration.
    McHedlishvili L; Mazurov V; Grassme KS; Goehler K; Robl B; Tazaki A; Roensch K; Duemmler A; Tanaka EM
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):E2258-66. PubMed ID: 22829665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinoic acid treatment inhibits mitosis in the pre-existing spinal cord during tail regeneration of the axolotl larva, Ambystoma mexicanum.
    Pietsch P
    Cytobios; 1993; 76(304):7-11. PubMed ID: 8243113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further amputations of the tail in adult Triturus carnifex: contribution to the study on the nature of regenerated spinal cord.
    Margotta V
    Ital J Anat Embryol; 2008; 113(3):167-86. PubMed ID: 19205589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in neural stem cell identity and differentiation capacity drive divergent regenerative outcomes in lizards and salamanders.
    Sun AX; Londono R; Hudnall ML; Tuan RS; Lozito TP
    Proc Natl Acad Sci U S A; 2018 Aug; 115(35):E8256-E8265. PubMed ID: 30104374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating Nrg1 Signaling in the Regenerating Axolotl Spinal Cord Using Multiplexed FISH.
    Freitas PD; Lovely AM; Monaghan JR
    Dev Neurobiol; 2019 May; 79(5):453-467. PubMed ID: 30793850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of stem cell identity by miR-200a during spinal cord regeneration.
    Walker SE; Sabin KZ; Gearhart MD; Yamamoto K; Echeverri K
    Development; 2022 Feb; 149(3):. PubMed ID: 35156681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events.
    Sehm T; Sachse C; Frenzel C; Echeverri K
    Dev Biol; 2009 Oct; 334(2):468-80. PubMed ID: 19682983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amputation-induced reactive oxygen species signaling is required for axolotl tail regeneration.
    Al Haj Baddar NW; Chithrala A; Voss SR
    Dev Dyn; 2019 Feb; 248(2):189-196. PubMed ID: 30569660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ectoderm to mesoderm lineage switching during axolotl tail regeneration.
    Echeverri K; Tanaka EM
    Science; 2002 Dec; 298(5600):1993-6. PubMed ID: 12471259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preclinical Molecular Signatures of Spinal Cord Functional Restoration: Optimizing the Metamorphic Axolotl (
    Demircan T; Hacıbektaşoğlu H; Sibai M; Fesçioğlu EC; Altuntaş E; Öztürk G; Süzek BE
    OMICS; 2020 Jun; 24(6):370-378. PubMed ID: 32496969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration.
    Fei JF; Schuez M; Tazaki A; Taniguchi Y; Roensch K; Tanaka EM
    Stem Cell Reports; 2014 Sep; 3(3):444-59. PubMed ID: 25241743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FGF-2 Up-regulation and proliferation of neural progenitors in the regenerating amphibian spinal cord in vivo.
    Zhang F; Clarke JD; Ferretti P
    Dev Biol; 2000 Sep; 225(2):381-91. PubMed ID: 10985857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Gene Knock-out of Axolotl Spinal Cord Neural Stem Cells via Electroporation of CAS9 Protein-gRNA Complexes.
    Lou WP; Wang L; Long C; Liu L; Fei JF
    J Vis Exp; 2019 Jul; (149):. PubMed ID: 31355781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative evaluation of morpholino-mediated protein knockdown of GFP, MSX1, and PAX7 during tail regeneration in Ambystoma mexicanum.
    Schnapp E; Tanaka EM
    Dev Dyn; 2005 Jan; 232(1):162-70. PubMed ID: 15580632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment of neural stem cell culture from the central nervous system of the Iberian ribbed newt Pleurodeles waltl.
    Seki-Omura R; Hayashi S; Oe S; Koike T; Nakano Y; Hirahara Y; Tanaka S; Kitada M
    Dev Growth Differ; 2022 Dec; 64(9):494-500. PubMed ID: 36308507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors.
    McHedlishvili L; Epperlein HH; Telzerow A; Tanaka EM
    Development; 2007 Jun; 134(11):2083-93. PubMed ID: 17507409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration.
    Schnapp E; Kragl M; Rubin L; Tanaka EM
    Development; 2005 Jul; 132(14):3243-53. PubMed ID: 15983402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salamander spinal cord regeneration: The ultimate positive control in vertebrate spinal cord regeneration.
    Tazaki A; Tanaka EM; Fei JF
    Dev Biol; 2017 Dec; 432(1):63-71. PubMed ID: 29030146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recruitment of postmitotic neurons into the regenerating spinal cord of urodeles.
    Zhang F; Ferretti P; Clarke JD
    Dev Dyn; 2003 Feb; 226(2):341-8. PubMed ID: 12557212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.