BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22915249)

  • 1. Type-I dyotropic reactions: understanding trends in barriers.
    Fernández I; Bickelhaupt FM; Cossío FP
    Chemistry; 2012 Sep; 18(39):12395-403. PubMed ID: 22915249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double group transfer reactions: role of activation strain and aromaticity in reaction barriers.
    Fernández I; Bickelhaupt FM; Cossío FP
    Chemistry; 2009 Dec; 15(47):13022-32. PubMed ID: 19852009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition-state energy and position along the reaction coordinate in an extended activation strain model.
    de Jong GT; Bickelhaupt FM
    Chemphyschem; 2007 Jun; 8(8):1170-81. PubMed ID: 17469091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleophilicity and leaving-group ability in frontside and backside S(N)2 reactions.
    Bento AP; Bickelhaupt FM
    J Org Chem; 2008 Sep; 73(18):7290-9. PubMed ID: 18690745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and reactivity of bis(silyl) dihydride complexes (PMe(3))(3)Ru(SiR(3))(2)(H)(2): model compounds and real intermediates in a dehydrogenative C-Si bond forming reaction.
    Dioumaev VK; Yoo BR; Procopio LJ; Carroll PJ; Berry DH
    J Am Chem Soc; 2003 Jul; 125(29):8936-48. PubMed ID: 12862491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative addition of hydrogen halides and dihalogens to Pd. Trends in reactivity and relativistic effects.
    de Jong GT; Kovacs A; Bickelhaupt FM
    J Phys Chem A; 2006 Jun; 110(25):7943-51. PubMed ID: 16789784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontside versus Backside S(N)2 substitution at group 14 atoms: origin of reaction barriers and reasons for their absence.
    Bento AP; Bickelhaupt FM
    Chem Asian J; 2008 Oct; 3(10):1783-92. PubMed ID: 18712744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces.
    Liu ZP; Hu P
    J Am Chem Soc; 2003 Feb; 125(7):1958-67. PubMed ID: 12580623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of the Cp2Zr-catalyzed hydrosilylation of ethylene. Reaction mechanism including new sigma-bond activation.
    Sakaki S; Takayama T; Sumimoto M; Sugimoto M
    J Am Chem Soc; 2004 Mar; 126(10):3332-48. PubMed ID: 15012164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical analysis of gas-phase front-side attack identity S(N)2(C) and S(N)2(Si) reactions with retention of configuration.
    Yang ZZ; Ding YL; Zhao DX
    J Phys Chem A; 2009 May; 113(18):5432-45. PubMed ID: 19354223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steric nature of the bite angle. A closer and a broader look.
    van Zeist WJ; Bickelhaupt FM
    Dalton Trans; 2011 Mar; 40(12):3028-38. PubMed ID: 21331411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alder-ene reaction: aromaticity and activation-strain analysis.
    Fernández I; Bickelhaupt FM
    J Comput Chem; 2012 Feb; 33(5):509-16. PubMed ID: 22144106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio chemical kinetics for SiH3 reactions with Si(x)H2x+2 (x = 1-4).
    Raghunath P; Lin MC
    J Phys Chem A; 2010 Dec; 114(51):13353-61. PubMed ID: 21128622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds.
    Kovács A; Esterhuysen C; Frenking G
    Chemistry; 2005 Mar; 11(6):1813-25. PubMed ID: 15672434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Octahedral adducts of dichlorosilane with substituted pyridines: synthesis, reactivity and a comparison of their structures and (29)si NMR chemical shifts.
    Fester GW; Wagler J; Brendler E; Böhme U; Roewer G; Kroke E
    Chemistry; 2008; 14(10):3164-76. PubMed ID: 18266304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio and DFT benchmark study for nucleophilic substitution at carbon (SN2@C) and silicon (SN2@Si).
    Bento AP; Solà M; Bickelhaupt FM
    J Comput Chem; 2005 Nov; 26(14):1497-504. PubMed ID: 16092145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of spin-flip reactions of Zr + CH3CN by relativistic density functional theory.
    Li Q; Chen XY; Qiu YX; Wang SG
    J Phys Chem A; 2012 May; 116(21):5019-25. PubMed ID: 22578173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectron spectroscopic and electronic structure studies of CH(2)O bonding and reactivity on ZnO surfaces: steps in the methanol synthesis reaction.
    Jones PM; May JA; Reitz JB; Solomon EI
    Inorg Chem; 2004 May; 43(11):3349-70. PubMed ID: 15154797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New cationic and zwitterionic Cp*M(kappa2-P,S) complexes (M = Rh, Ir): divergent reactivity pathways arising from alternative modes of ancillary ligand participation in substrate activation.
    Hesp KD; McDonald R; Ferguson MJ; Stradiotto M
    J Am Chem Soc; 2008 Dec; 130(48):16394-406. PubMed ID: 18986145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.