BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 2291584)

  • 41. Elemental analysis of occupational and environmental lung diseases by electron probe microanalyzer with wavelength dispersive spectrometer.
    Takada T; Moriyama H; Suzuki E
    Respir Investig; 2014 Jan; 52(1):5-13. PubMed ID: 24388365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An evaluation of on-tool shrouds for controlling respirable crystalline silica in restoration stone work.
    Healy CB; Coggins MA; Van Tongeren M; MacCalman L; McGowan P
    Ann Occup Hyg; 2014 Nov; 58(9):1155-67. PubMed ID: 25261456
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Giant-cell interstitial pneumonia and hard-metal pneumoconiosis. A clinicopathologic study of four cases and review of the literature.
    Ohori NP; Sciurba FC; Owens GR; Hodgson MJ; Yousem SA
    Am J Surg Pathol; 1989 Jul; 13(7):581-7. PubMed ID: 2660610
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapidly fatal progression of cobalt lung in a diamond polisher.
    Nemery B; Nagels J; Verbeken E; Dinsdale D; Demedts M
    Am Rev Respir Dis; 1990 May; 141(5 Pt 1):1373-8. PubMed ID: 2160215
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Increased micronucleus frequencies in surrogate and target cells from workers exposed to crystalline silica-containing dust.
    Demircigil GC; Coskun E; Vidinli N; Erbay Y; Yilmaz M; Cimrin A; Schins RP; Borm PJ; Burgaz S
    Mutagenesis; 2010 Mar; 25(2):163-9. PubMed ID: 19939883
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomarkers of exposure to metal dust in exhaled breath condensate: methodology optimization.
    Félix PM; Franco C; Barreiros MA; Batista B; Bernardes S; Garcia SM; Almeida AB; Almeida SM; Wolterbeek HT; Pinheiro T
    Arch Environ Occup Health; 2013; 68(2):72-9. PubMed ID: 23428056
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Measurement of chemical agents in metallurgy field: electric steel plant].
    Cottica D; Grignani E; Ghitti R; Festa D; Apostoli P
    G Ital Med Lav Ergon; 2012; 34(3):236-41. PubMed ID: 23213795
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Cobalt-induced asthma in workers exposed to hard metal dust].
    Lantos A; Galambos E; Tarján E; Zsiray M; Wollák A
    Orv Hetil; 1992 Oct; 133(43):2771-2. PubMed ID: 1408105
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [3 cases of hard metal dust lung disease].
    Scherrer M; Parambadathumalil A; Bürki H; Senn A; Zürcher R
    Schweiz Med Wochenschr; 1970 Dec; 100(52):2251-5. PubMed ID: 5524953
    [No Abstract]   [Full Text] [Related]  

  • 50. Evaluation and comparison of the levels of occupational exposure to cobalt during dry and/or wet hard metal sharpening. Environmental and biological monitoring.
    Imbrogno P; Alborghetti F
    Sci Total Environ; 1994 Jun; 150(1-3):259-62. PubMed ID: 7939606
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elemental properties of copper slag and measured airborne exposures at a copper slag processing facility.
    Mugford C; Gibbs JL; Boylstein R
    J Occup Environ Hyg; 2017 Aug; 14(8):D120-D129. PubMed ID: 28506182
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wollastonite exposure and lung fibrosis.
    Huuskonen MS; Tossavainen A; Koskinen H; Zitting A; Korhonen O; Nickels J; Korhonen K; Vaaranen V
    Environ Res; 1983 Apr; 30(2):291-304. PubMed ID: 6299727
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Silica exposure assessment in a mortality study of Vermont granite workers.
    Verma DK; Vacek PM; des Tombe K; Finkelstein M; Branch B; Gibbs GW; Graham WG
    J Occup Environ Hyg; 2011 Feb; 8(2):71-9. PubMed ID: 21229455
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Occupational exposure to crystalline silica at Alberta work sites.
    Radnoff D; Todor MS; Beach J
    J Occup Environ Hyg; 2014; 11(9):557-70. PubMed ID: 24479465
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Widia tool grinding: the importance of primary prevention measures in reducing occupational exposure to cobalt.
    Cereda C; Redaelli ML; Canesi M; Carniti A; Bianchi S
    Sci Total Environ; 1994 Jun; 150(1-3):249-51. PubMed ID: 7939604
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Occupational hygiene topics in ferroalloys production].
    Kudriashov IN; Fedoruk AA
    Med Tr Prom Ekol; 2014; (6):17-9. PubMed ID: 25282808
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pulmonary fibrosis in aluminum oxide workers. Investigation of nine workers, with pathologic examination and microanalysis in three of them.
    Jederlinic PJ; Abraham JL; Churg A; Himmelstein JS; Epler GR; Gaensler EA
    Am Rev Respir Dis; 1990 Nov; 142(5):1179-84. PubMed ID: 2240841
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Field evaluation of an engineering control for respirable crystalline silica exposures during mortar removal.
    Collingwood S; Heitbrink WA
    J Occup Environ Hyg; 2007 Nov; 4(11):875-87. PubMed ID: 17917951
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inflammatory and coagulatory markers and exposure to different size fractions of particle mass, number and surface area air concentrations in the Swedish hard metal industry, in particular to cobalt.
    Andersson L; Hedbrant A; Persson A; Bryngelsson IL; Sjögren B; Stockfelt L; Särndahl E; Westberg H
    Biomarkers; 2021 Sep; 26(6):557-569. PubMed ID: 34128444
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of foundry dust evaluation by various methods.
    Boone CW; Van Houten RW
    Am Ind Hyg Assoc J; 1976 Sep; 37(9):537-40. PubMed ID: 188331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.