BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 22916023)

  • 1. Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome.
    Rovinskiy N; Agbleke AA; Chesnokova O; Pang Z; Higgins NP
    PLoS Genet; 2012; 8(8):e1002845. PubMed ID: 22916023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring In Vivo Supercoil Dynamics and Transcription Elongation Rates in Bacterial Chromosomes.
    Patrick Higgins N
    Methods Mol Biol; 2017; 1624():17-27. PubMed ID: 28842872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA topology of highly transcribed operons in Salmonella enterica serovar Typhimurium.
    Booker BM; Deng S; Higgins NP
    Mol Microbiol; 2010 Dec; 78(6):1348-64. PubMed ID: 21143310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The acidic C-terminal tail of the GyrA subunit moderates the DNA supercoiling activity of Bacillus subtilis gyrase.
    Lanz MA; Farhat M; Klostermeier D
    J Biol Chem; 2014 May; 289(18):12275-85. PubMed ID: 24563461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulated control of DNA supercoiling balance by the DNA-wrapping domain of bacterial gyrase.
    Hobson MJ; Bryant Z; Berger JM
    Nucleic Acids Res; 2020 Feb; 48(4):2035-2049. PubMed ID: 31950157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA polymerase: chromosome domain boundary maker and regulator of supercoil density.
    Higgins NP
    Curr Opin Microbiol; 2014 Dec; 22():138-43. PubMed ID: 25460807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species-specific supercoil dynamics of the bacterial nucleoid.
    Higgins NP
    Biophys Rev; 2016 Nov; 8(Suppl 1):113-121. PubMed ID: 28510215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth rate toxicity phenotypes and homeostatic supercoil control differentiate Escherichia coli from Salmonella enterica serovar Typhimurium.
    Champion K; Higgins NP
    J Bacteriol; 2007 Aug; 189(16):5839-49. PubMed ID: 17400739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercoil Levels in
    Rovinskiy NS; Agbleke AA; Chesnokova ON; Higgins NP
    Microorganisms; 2019 Mar; 7(3):. PubMed ID: 30875939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of RNA polymerase modifications on transcription-induced negative supercoiling and associated R-loop formation.
    Broccoli S; Rallu F; Sanscartier P; Cerritelli SM; Crouch RJ; Drolet M
    Mol Microbiol; 2004 Jun; 52(6):1769-79. PubMed ID: 15186424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercoiling Effects on Short-Range DNA Looping in E. coli.
    Mogil LS; Becker NA; Maher LJ
    PLoS One; 2016; 11(10):e0165306. PubMed ID: 27783696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA polymerase (rpoB) mutants selected for increased resistance to gyrase inhibitors in Salmonella typhimurium.
    Blanc-Potard AB; Gari E; Spirito F; Figueroa-Bossi N; Bossi L
    Mol Gen Genet; 1995 Jun; 247(6):680-92. PubMed ID: 7616959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome.
    Deng S; Stein RA; Higgins NP
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3398-403. PubMed ID: 14993611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations reducing replication from R-loops suppress the defects of growth, chromosome segregation and DNA supercoiling in cells lacking topoisomerase I and RNase HI activity.
    Usongo V; Martel M; Balleydier A; Drolet M
    DNA Repair (Amst); 2016 Apr; 40():1-17. PubMed ID: 26947024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consequences of producing DNA gyrase from a synthetic gyrBA operon in Salmonella enterica serovar Typhimurium.
    Pozdeev G; Mogre A; Dorman CJ
    Mol Microbiol; 2021 Jun; 115(6):1410-1429. PubMed ID: 33539568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological insulators inhibit diffusion of transcription-induced positive supercoils in the chromosome of Escherichia coli.
    Moulin L; Rahmouni AR; Boccard F
    Mol Microbiol; 2005 Jan; 55(2):601-10. PubMed ID: 15659173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural coupling between RNA polymerase composition and DNA supercoiling in coordinating transcription: a global role for the omega subunit?
    Geertz M; Travers A; Mehandziska S; Sobetzko P; Chandra-Janga S; Shimamoto N; Muskhelishvili G
    mBio; 2011; 2(4):. PubMed ID: 21810966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axial distortion as a sensor of supercoil changes: a molecular model for the homeostatic regulation of DNA gyrase.
    Unniraman S; Nagaraja V
    J Genet; 2001 Dec; 80(3):119-24. PubMed ID: 11988630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA supercoiling differences in bacteria result from disparate DNA gyrase activation by polyamines.
    Duprey A; Groisman EA
    PLoS Genet; 2020 Oct; 16(10):e1009085. PubMed ID: 33125364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative supercoiling of DNA by gyrase is inhibited in Salmonella enterica serovar Typhimurium during adaptation to acid stress.
    Colgan AM; Quinn HJ; Kary SC; Mitchenall LA; Maxwell A; Cameron ADS; Dorman CJ
    Mol Microbiol; 2018 Mar; 107(6):734-746. PubMed ID: 29352745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.