BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22916242)

  • 21. Multispectroscopic insight, morphological analysis and molecular docking studies of Cu
    Yousuf I; Bashir M; Arjmand F; Tabassum S
    J Biomol Struct Dyn; 2019 Aug; 37(12):3290-3304. PubMed ID: 30124142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation on the interaction between triclosan and bovine serum albumin by spectroscopic methods.
    Gu J; Zheng S; Zhao H; Sun T
    J Environ Sci Health B; 2020; 55(1):52-59. PubMed ID: 31453744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deciphering the binding patterns and conformation changes upon the bovine serum albumin-rosmarinic acid complex.
    Peng X; Wang X; Qi W; Huang R; Su R; He Z
    Food Funct; 2015 Aug; 6(8):2712-26. PubMed ID: 26146359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of tea polyphenol and bovine serum albumin on tea cream formation by multiple spectroscopy methods and molecular docking.
    Yu X; Cai X; Luo L; Wang J; Ma M; Wang M; Zeng L
    Food Chem; 2020 Dec; 333():127432. PubMed ID: 32659661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study on the interaction of fisetholz with BSA/HSA by multi-spectroscopic, cyclic voltammetric, and molecular docking technique.
    Wu J; Bi SY; Sun XY; Zhao R; Wang JH; Zhou HF
    J Biomol Struct Dyn; 2019 Aug; 37(13):3496-3505. PubMed ID: 30176766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of catalase by tea catechins in free and cellular state: a biophysical approach.
    Pal S; Dey SK; Saha C
    PLoS One; 2014; 9(7):e102460. PubMed ID: 25025898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro study on the binding of gemcitabine to bovine serum albumin.
    Shen H; Gu Z; Jian K; Qi J
    J Pharm Biomed Anal; 2013 Mar; 75():86-93. PubMed ID: 23261804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binding of Catechins to Staphylococcal Enterotoxin A.
    Shimamura Y; Utsumi M; Hirai C; Nakano S; Ito S; Tsuji A; Ishii T; Hosoya T; Kan T; Ohashi N; Masuda S
    Molecules; 2018 May; 23(5):. PubMed ID: 29747413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of triprolidine hydrochloride with serum albumins: thermodynamic and binding characteristics, and influence of site probes.
    Sandhya B; Hegde AH; Kalanur SS; Katrahalli U; Seetharamappa J
    J Pharm Biomed Anal; 2011 Apr; 54(5):1180-6. PubMed ID: 21215548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic exploration and thermodynamic characterization of desvenlafaxine interacting with fluorescent bovine serum albumin.
    Patgar M; Durgannavar A; Nandibewoor S; Chimatadar S
    J Mol Recognit; 2017 Feb; 30(2):. PubMed ID: 27696548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding of (-)-epigallocatechin-3-gallate with thermally-induced bovine serum albumin/ι-carrageenan particles.
    Li J; Wang X
    Food Chem; 2015 Feb; 168():566-71. PubMed ID: 25172749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of tebuconazole with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods.
    Bai J; Sun X; Ma X
    J Environ Sci Health B; 2020; 55(6):509-516. PubMed ID: 32037956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of ultrasound on the interaction between (-)-epicatechin gallate and bovine serum albumin in a model wine.
    Zhang QA; Fu XZ; García Martín JF
    Ultrason Sonochem; 2017 Jul; 37():405-413. PubMed ID: 28427650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectroscopic studies on binding of 1-phenyl-3-(coumarin-6-yl)sulfonylurea to bovine serum albumin.
    Liu XH; Xi PX; Chen FJ; Xu ZH; Zeng ZZ
    J Photochem Photobiol B; 2008 Aug; 92(2):98-102. PubMed ID: 18571426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterizing the binding interaction between antimalarial artemether (AMT) and bovine serum albumin (BSA): Spectroscopic and molecular docking methods.
    Shi JH; Pan DQ; Wang XX; Liu TT; Jiang M; Wang Q
    J Photochem Photobiol B; 2016 Sep; 162():14-23. PubMed ID: 27327124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multispectroscopic and molecular modeling studies on the interaction of copper-ibuprofenate complex with bovine serum albumin (BSA).
    Shiri F; Rahimi-Nasrabadi M; Ahmadi F; Ehrlich H
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():510-521. PubMed ID: 29902757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation on the interaction of Rutin with serum albumins: Insights from spectroscopic and molecular docking techniques.
    Sengupta P; Sardar PS; Roy P; Dasgupta S; Bose A
    J Photochem Photobiol B; 2018 Jun; 183():101-110. PubMed ID: 29702339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preferential binding of fisetin to the native state of bovine serum albumin: spectroscopic and docking studies.
    Singha Roy A; Pandey NK; Dasgupta S
    Mol Biol Rep; 2013 Apr; 40(4):3239-53. PubMed ID: 23277393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectroscopic study on the interaction between mononaphthalimide spermidine (MINS) and bovine serum albumin (BSA).
    Tian Z; Zang F; Luo W; Zhao Z; Wang Y; Xu X; Wang C
    J Photochem Photobiol B; 2015 Jan; 142():103-9. PubMed ID: 25528194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of tetramethylpyrazine with two serum albumins by a hybrid spectroscopic method.
    Cheng Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():321-30. PubMed ID: 22484270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.