These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 22916491)

  • 21. ChiS histidine kinase negatively regulates the production of chitinase ChiC in Streptomyces peucetius.
    Rabbind Singh A; Senthamaraikannan P; Thangavel C; Danda R; Pandian SK; Dharmalingam K
    Microbiol Res; 2014; 169(2-3):155-62. PubMed ID: 23972296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Signal transduction via chimeric receptor (Tar-EnvZ, Taz)].
    Utsumi R; Inoue M
    Tanpakushitsu Kakusan Koso; 1991 Feb; 36(2):160-4. PubMed ID: 2017554
    [No Abstract]   [Full Text] [Related]  

  • 23. Bacterial histidine kinase as signal sensor and transducer.
    Khorchid A; Ikura M
    Int J Biochem Cell Biol; 2006 Mar; 38(3):307-12. PubMed ID: 16242988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arabidopsis response regulator, ARR22, ectopic expression of which results in phenotypes similar to the wol cytokinin-receptor mutant.
    Kiba T; Aoki K; Sakakibara H; Mizuno T
    Plant Cell Physiol; 2004 Aug; 45(8):1063-77. PubMed ID: 15356332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Complex Signaling Cascade Governs Pristinamycin Biosynthesis in Streptomyces pristinaespiralis.
    Mast Y; Guezguez J; Handel F; Schinko E
    Appl Environ Microbiol; 2015 Oct; 81(19):6621-36. PubMed ID: 26187956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of JadH as an FAD- and NAD(P)H-dependent bifunctional hydroxylase/dehydrase in jadomycin biosynthesis.
    Chen Y; Fan K; He Y; Xu X; Peng Y; Yu T; Jia C; Yang K
    Chembiochem; 2010 May; 11(8):1055-60. PubMed ID: 20422670
    [No Abstract]   [Full Text] [Related]  

  • 27. YycH regulates the activity of the essential YycFG two-component system in Bacillus subtilis.
    Szurmant H; Nelson K; Kim EJ; Perego M; Hoch JA
    J Bacteriol; 2005 Aug; 187(15):5419-26. PubMed ID: 16030236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical activities of the absA two-component system of Streptomyces coelicolor.
    Sheeler NL; MacMillan SV; Nodwell JR
    J Bacteriol; 2005 Jan; 187(2):687-96. PubMed ID: 15629939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Summary of useful methods for two-component system research.
    Scharf BE
    Curr Opin Microbiol; 2010 Apr; 13(2):246-52. PubMed ID: 20138001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross-talk between an orphan response regulator and a noncognate histidine kinase in Streptomyces coelicolor.
    Wang W; Shu D; Chen L; Jiang W; Lu Y
    FEMS Microbiol Lett; 2009 May; 294(2):150-6. PubMed ID: 19341396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of bacteriophytochromes from photosynthetic bacteria: histidine kinase signaling triggered by light and redox sensing.
    Giraud E; Lavergne J; Verméglio A
    Methods Enzymol; 2010; 471():135-59. PubMed ID: 20946847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions between the YycFG and PhoPR two-component systems in Bacillus subtilis: the PhoR kinase phosphorylates the non-cognate YycF response regulator upon phosphate limitation.
    Howell A; Dubrac S; Noone D; Varughese KI; Devine K
    Mol Microbiol; 2006 Feb; 59(4):1199-215. PubMed ID: 16430694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of ResE phosphatase activity in down-regulation of ResD-controlled genes in Bacillus subtilis during aerobic growth.
    Nakano MM; Zhu Y
    J Bacteriol; 2001 Mar; 183(6):1938-44. PubMed ID: 11222591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complex two-component signaling regulates the general stress response in Alphaproteobacteria.
    Kaczmarczyk A; Hochstrasser R; Vorholt JA; Francez-Charlot A
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):E5196-204. PubMed ID: 25404331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensor domains of two-component regulatory systems.
    Cheung J; Hendrickson WA
    Curr Opin Microbiol; 2010 Apr; 13(2):116-23. PubMed ID: 20223701
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of cytotoxin expression by converging eukaryotic-type and two-component signalling mechanisms in Streptococcus agalactiae.
    Rajagopal L; Vo A; Silvestroni A; Rubens CE
    Mol Microbiol; 2006 Nov; 62(4):941-57. PubMed ID: 17005013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global expression analysis of two-component system regulator genes during Mycobacterium tuberculosis growth in human macrophages.
    Haydel SE; Clark-Curtiss JE
    FEMS Microbiol Lett; 2004 Jul; 236(2):341-7. PubMed ID: 15251217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. cvhA gene of Streptomyces hygroscopicus 10-22 encodes a negative regulator for mycelia development.
    Wang HA; Qin L; Lu P; Pang ZX; Deng ZX; Zhao GP
    Acta Biochim Biophys Sin (Shanghai); 2006 Apr; 38(4):271-80. PubMed ID: 16604267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and function of HWE/HisKA2-family sensor histidine kinases.
    Herrou J; Crosson S; Fiebig A
    Curr Opin Microbiol; 2017 Apr; 36():47-54. PubMed ID: 28193573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial sensor kinases: diversity in the recognition of environmental signals.
    Krell T; Lacal J; Busch A; Silva-Jiménez H; Guazzaroni ME; Ramos JL
    Annu Rev Microbiol; 2010; 64():539-59. PubMed ID: 20825354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.