These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 22916730)

  • 1. LIPID11: a modular framework for lipid simulations using amber.
    Skjevik ÅA; Madej BD; Walker RC; Teigen K
    J Phys Chem B; 2012 Sep; 116(36):11124-36. PubMed ID: 22916730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomembrane simulations of 12 lipid types using the general amber force field in a tensionless ensemble.
    Coimbra JT; Sousa SF; Fernandes PA; Rangel M; Ramos MJ
    J Biomol Struct Dyn; 2014; 32(1):88-103. PubMed ID: 23730894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-atom lipid bilayer self-assembly with the AMBER and CHARMM lipid force fields.
    Skjevik ÅA; Madej BD; Dickson CJ; Teigen K; Walker RC; Gould IR
    Chem Commun (Camb); 2015 Mar; 51(21):4402-5. PubMed ID: 25679020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Parameterization of Cholesterol for Mixed Lipid Bilayer Simulation within the Amber Lipid14 Force Field.
    Madej BD; Gould IR; Walker RC
    J Phys Chem B; 2015 Sep; 119(38):12424-35. PubMed ID: 26359797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid21: Complex Lipid Membrane Simulations with AMBER.
    Dickson CJ; Walker RC; Gould IR
    J Chem Theory Comput; 2022 Mar; 18(3):1726-1736. PubMed ID: 35113553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.
    Adams M; Wang E; Zhuang X; Klauda JB
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2134-2144. PubMed ID: 29169746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field.
    Lee J; Cheng X; Swails JM; Yeom MS; Eastman PK; Lemkul JA; Wei S; Buckner J; Jeong JC; Qi Y; Jo S; Pande VS; Case DA; Brooks CL; MacKerell AD; Klauda JB; Im W
    J Chem Theory Comput; 2016 Jan; 12(1):405-13. PubMed ID: 26631602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Critical Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers.
    Pluhackova K; Kirsch SA; Han J; Sun L; Jiang Z; Unruh T; Böckmann RA
    J Phys Chem B; 2016 Apr; 120(16):3888-903. PubMed ID: 27035634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomolecular simulations with the transferable potentials for phase equilibria: extension to phospholipids.
    Bhatnagar N; Kamath G; Potoff JJ
    J Phys Chem B; 2013 Aug; 117(34):9910-21. PubMed ID: 23895572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of Parameters of the AMBER Potential Force Field for Phospholipids for Description of Thermal Phase Transitions.
    Ogata K; Nakamura S
    J Phys Chem B; 2015 Jul; 119(30):9726-39. PubMed ID: 26107046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomolecular simulations of membranes: physical properties from different force fields.
    Siu SW; Vácha R; Jungwirth P; Böckmann RA
    J Chem Phys; 2008 Mar; 128(12):125103. PubMed ID: 18376978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamics of phospholipid bilayers using recently developed general all-atom force fields.
    Rosso L; Gould IR
    J Comput Chem; 2008 Jan; 29(1):24-37. PubMed ID: 17910006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids.
    Li H; Chowdhary J; Huang L; He X; MacKerell AD; Roux B
    J Chem Theory Comput; 2017 Sep; 13(9):4535-4552. PubMed ID: 28731702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of lipid bilayer self-assembly using all-atom lipid force fields.
    Skjevik ÅA; Madej BD; Dickson CJ; Lin C; Teigen K; Walker RC; Gould IR
    Phys Chem Chem Phys; 2016 Apr; 18(15):10573-84. PubMed ID: 27034995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extension of the Slipids Force Field to Polyunsaturated Lipids.
    Ermilova I; Lyubartsev AP
    J Phys Chem B; 2016 Dec; 120(50):12826-12842. PubMed ID: 27966360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of oxidised phospholipids and cholesterol on the biophysical properties of POPC bilayers.
    Schumann-Gillett A; O'Mara ML
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):210-219. PubMed ID: 30053406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. APL@Voro: a Voronoi-based membrane analysis tool for GROMACS trajectories.
    Lukat G; Krüger J; Sommer B
    J Chem Inf Model; 2013 Nov; 53(11):2908-25. PubMed ID: 24175728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Force-Field Parameters on Cytochrome P450-Membrane Interactions: Structure and Dynamics.
    Mustafa G; Nandekar PP; Mukherjee G; Bruce NJ; Wade RC
    Sci Rep; 2020 Apr; 10(1):7284. PubMed ID: 32350331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derivation of original RESP atomic partial charges for MD simulations of the LDAO surfactant with AMBER: applications to a model of micelle and a fragment of the lipid kinase PI4KA.
    Karakas E; Taveneau C; Bressanelli S; Marchi M; Robert B; Abel S
    J Biomol Struct Dyn; 2017 Jan; 35(1):159-181. PubMed ID: 26998712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tris-thiourea tripodal-based molecules as chloride transmembrane transporters: insights from molecular dynamics simulations.
    Marques I; Colaço AR; Costa PJ; Busschaert N; Gale PA; Félix V
    Soft Matter; 2014 May; 10(20):3608-21. PubMed ID: 24663079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.