BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22916955)

  • 1. Plasmonic photoanodes for solar water splitting with visible light.
    Lee J; Mubeen S; Ji X; Stucky GD; Moskovits M
    Nano Lett; 2012 Sep; 12(9):5014-9. PubMed ID: 22916955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of doping (C or N) and co-doping (C+N) on the photoactive properties of magnetron sputtered titania coatings for the application of solar water-splitting.
    Rahman M; Dang BH; McDonnell K; MacElroy JM; Dowling DP
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4729-35. PubMed ID: 22905523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures.
    Chen HM; Chen CK; Chen CJ; Cheng LC; Wu PC; Cheng BH; Ho YZ; Tseng ML; Hsu YY; Chan TS; Lee JF; Liu RS; Tsai DP
    ACS Nano; 2012 Aug; 6(8):7362-72. PubMed ID: 22849358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoporous TiO(2): comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction.
    Hartmann P; Lee DK; Smarsly BM; Janek J
    ACS Nano; 2010 Jun; 4(6):3147-54. PubMed ID: 20486697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced water splitting by Fe2O3-TiO2-FTO photoanode with modified energy band structure.
    Noh E; Noh KJ; Yun KS; Kim BR; Jeong HJ; Oh HJ; Jung SC; Kang WS; Kim SJ
    ScientificWorldJournal; 2013; 2013():723201. PubMed ID: 24501585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion.
    Xu M; Da P; Wu H; Zhao D; Zheng G
    Nano Lett; 2012 Mar; 12(3):1503-8. PubMed ID: 22364360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface Manipulation to Improve Plasmon-Coupled Photoelectrochemical Water Splitting on α-Fe
    Xu Z; Fan Z; Shi Z; Li M; Feng J; Pei L; Zhou C; Zhou J; Yang L; Li W; Xu G; Yan S; Zou Z
    ChemSusChem; 2018 Jan; 11(1):237-244. PubMed ID: 28940828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branched TiO₂ nanorods for photoelectrochemical hydrogen production.
    Cho IS; Chen Z; Forman AJ; Kim DR; Rao PM; Jaramillo TF; Zheng X
    Nano Lett; 2011 Nov; 11(11):4978-84. PubMed ID: 21999403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting.
    Su F; Wang T; Lv R; Zhang J; Zhang P; Lu J; Gong J
    Nanoscale; 2013 Oct; 5(19):9001-9. PubMed ID: 23864159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles.
    Zhu J; Xue M; Hoekstra R; Xiu F; Zeng B; Wang KL
    Nanoscale; 2012 Mar; 4(6):1978-81. PubMed ID: 22354350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization for visible light photocatalytic water splitting: gold-coated and surface-textured TiO2 inverse opal nano-networks.
    Kim K; Thiyagarajan P; Ahn HJ; Kim SI; Jang JH
    Nanoscale; 2013 Jul; 5(14):6254-60. PubMed ID: 23733045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photo anode decorated with Ag nanoparticles.
    Wei Y; Ke L; Kong J; Liu H; Jiao Z; Lu X; Du H; Sun XW
    Nanotechnology; 2012 Jun; 23(23):235401. PubMed ID: 22609803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Understanding of the Plasmonic Enhancement for Solar Water Splitting.
    Zhang P; Wang T; Gong J
    Adv Mater; 2015 Sep; 27(36):5328-42. PubMed ID: 26265309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation.
    Wang GL; Xu JJ; Chen HY
    Biosens Bioelectron; 2009 Apr; 24(8):2494-8. PubMed ID: 19185483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance plastic platinized counter electrode via photoplatinization technique for flexible dye-sensitized solar cells.
    Fu NQ; Fang YY; Duan YD; Zhou XW; Xiao XR; Lin Y
    ACS Nano; 2012 Nov; 6(11):9596-605. PubMed ID: 23039879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast carrier dynamics in nanostructures for solar fuels.
    Baxter JB; Richter C; Schmuttenmaer CA
    Annu Rev Phys Chem; 2014; 65():423-47. PubMed ID: 24423371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles.
    Brown MD; Suteewong T; Kumar RS; D'Innocenzo V; Petrozza A; Lee MM; Wiesner U; Snaith HJ
    Nano Lett; 2011 Feb; 11(2):438-45. PubMed ID: 21194204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution.
    Kye J; Shin M; Lim B; Jang JW; Oh I; Hwang S
    ACS Nano; 2013 Jul; 7(7):6017-23. PubMed ID: 23750804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale strontium titanate photocatalysts for overall water splitting.
    Townsend TK; Browning ND; Osterloh FE
    ACS Nano; 2012 Aug; 6(8):7420-6. PubMed ID: 22816530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.