These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 22916955)
1. Plasmonic photoanodes for solar water splitting with visible light. Lee J; Mubeen S; Ji X; Stucky GD; Moskovits M Nano Lett; 2012 Sep; 12(9):5014-9. PubMed ID: 22916955 [TBL] [Abstract][Full Text] [Related]
2. Effect of doping (C or N) and co-doping (C+N) on the photoactive properties of magnetron sputtered titania coatings for the application of solar water-splitting. Rahman M; Dang BH; McDonnell K; MacElroy JM; Dowling DP J Nanosci Nanotechnol; 2012 Jun; 12(6):4729-35. PubMed ID: 22905523 [TBL] [Abstract][Full Text] [Related]
3. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures. Chen HM; Chen CK; Chen CJ; Cheng LC; Wu PC; Cheng BH; Ho YZ; Tseng ML; Hsu YY; Chan TS; Lee JF; Liu RS; Tsai DP ACS Nano; 2012 Aug; 6(8):7362-72. PubMed ID: 22849358 [TBL] [Abstract][Full Text] [Related]
4. Mesoporous TiO(2): comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction. Hartmann P; Lee DK; Smarsly BM; Janek J ACS Nano; 2010 Jun; 4(6):3147-54. PubMed ID: 20486697 [TBL] [Abstract][Full Text] [Related]
5. Enhanced water splitting by Fe2O3-TiO2-FTO photoanode with modified energy band structure. Noh E; Noh KJ; Yun KS; Kim BR; Jeong HJ; Oh HJ; Jung SC; Kang WS; Kim SJ ScientificWorldJournal; 2013; 2013():723201. PubMed ID: 24501585 [TBL] [Abstract][Full Text] [Related]
6. Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. Xu M; Da P; Wu H; Zhao D; Zheng G Nano Lett; 2012 Mar; 12(3):1503-8. PubMed ID: 22364360 [TBL] [Abstract][Full Text] [Related]
7. Interface Manipulation to Improve Plasmon-Coupled Photoelectrochemical Water Splitting on α-Fe Xu Z; Fan Z; Shi Z; Li M; Feng J; Pei L; Zhou C; Zhou J; Yang L; Li W; Xu G; Yan S; Zou Z ChemSusChem; 2018 Jan; 11(1):237-244. PubMed ID: 28940828 [TBL] [Abstract][Full Text] [Related]
8. Branched TiO₂ nanorods for photoelectrochemical hydrogen production. Cho IS; Chen Z; Forman AJ; Kim DR; Rao PM; Jaramillo TF; Zheng X Nano Lett; 2011 Nov; 11(11):4978-84. PubMed ID: 21999403 [TBL] [Abstract][Full Text] [Related]
9. Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting. Su F; Wang T; Lv R; Zhang J; Zhang P; Lu J; Gong J Nanoscale; 2013 Oct; 5(19):9001-9. PubMed ID: 23864159 [TBL] [Abstract][Full Text] [Related]
10. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles. Zhu J; Xue M; Hoekstra R; Xiu F; Zeng B; Wang KL Nanoscale; 2012 Mar; 4(6):1978-81. PubMed ID: 22354350 [TBL] [Abstract][Full Text] [Related]
11. Optimization for visible light photocatalytic water splitting: gold-coated and surface-textured TiO2 inverse opal nano-networks. Kim K; Thiyagarajan P; Ahn HJ; Kim SI; Jang JH Nanoscale; 2013 Jul; 5(14):6254-60. PubMed ID: 23733045 [TBL] [Abstract][Full Text] [Related]
12. Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photo anode decorated with Ag nanoparticles. Wei Y; Ke L; Kong J; Liu H; Jiao Z; Lu X; Du H; Sun XW Nanotechnology; 2012 Jun; 23(23):235401. PubMed ID: 22609803 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic Understanding of the Plasmonic Enhancement for Solar Water Splitting. Zhang P; Wang T; Gong J Adv Mater; 2015 Sep; 27(36):5328-42. PubMed ID: 26265309 [TBL] [Abstract][Full Text] [Related]
14. Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation. Wang GL; Xu JJ; Chen HY Biosens Bioelectron; 2009 Apr; 24(8):2494-8. PubMed ID: 19185483 [TBL] [Abstract][Full Text] [Related]
15. High-performance plastic platinized counter electrode via photoplatinization technique for flexible dye-sensitized solar cells. Fu NQ; Fang YY; Duan YD; Zhou XW; Xiao XR; Lin Y ACS Nano; 2012 Nov; 6(11):9596-605. PubMed ID: 23039879 [TBL] [Abstract][Full Text] [Related]
16. Ultrafast carrier dynamics in nanostructures for solar fuels. Baxter JB; Richter C; Schmuttenmaer CA Annu Rev Phys Chem; 2014; 65():423-47. PubMed ID: 24423371 [TBL] [Abstract][Full Text] [Related]
17. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film. Zhu A; Luo Y; Tian Y Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788 [TBL] [Abstract][Full Text] [Related]
18. Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Brown MD; Suteewong T; Kumar RS; D'Innocenzo V; Petrozza A; Lee MM; Wiesner U; Snaith HJ Nano Lett; 2011 Feb; 11(2):438-45. PubMed ID: 21194204 [TBL] [Abstract][Full Text] [Related]
19. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution. Kye J; Shin M; Lim B; Jang JW; Oh I; Hwang S ACS Nano; 2013 Jul; 7(7):6017-23. PubMed ID: 23750804 [TBL] [Abstract][Full Text] [Related]
20. Nanoscale strontium titanate photocatalysts for overall water splitting. Townsend TK; Browning ND; Osterloh FE ACS Nano; 2012 Aug; 6(8):7420-6. PubMed ID: 22816530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]