These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22916955)

  • 41. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation.
    Seh ZW; Liu S; Low M; Zhang SY; Liu Z; Mlayah A; Han MY
    Adv Mater; 2012 May; 24(17):2310-4. PubMed ID: 22467121
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures.
    García de Arquer FP; Mihi A; Kufer D; Konstantatos G
    ACS Nano; 2013 Apr; 7(4):3581-8. PubMed ID: 23495769
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plasmon-promoted electrocatalytic water splitting on metal-semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites.
    Du L; Shi G; Zhao Y; Chen X; Sun H; Liu F; Cheng F; Xie W
    Chem Sci; 2019 Nov; 10(41):9605-9612. PubMed ID: 32055334
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.
    Highfield J
    Molecules; 2015 Apr; 20(4):6739-93. PubMed ID: 25884553
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting.
    Mersch D; Lee CY; Zhang JZ; Brinkert K; Fontecilla-Camps JC; Rutherford AW; Reisner E
    J Am Chem Soc; 2015 Jul; 137(26):8541-9. PubMed ID: 26046591
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation.
    Fang J; Xu L; Zhang Z; Yuan Y; Cao S; Wang Z; Yin L; Liao Y; Xue C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8088-92. PubMed ID: 23865712
    [TBL] [Abstract][Full Text] [Related]  

  • 47. One-dimensional and (001) facetted nanostructured TiO2 photoanodes for dye-sensitized solar cells.
    Lin H; Wang X; Hao F
    Chimia (Aarau); 2013; 67(3):136-41. PubMed ID: 23574952
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells.
    Wang Y; Sun T; Paudel T; Zhang Y; Ren Z; Kempa K
    Nano Lett; 2012 Jan; 12(1):440-5. PubMed ID: 22185407
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biphasic water splitting by osmocene.
    Ge P; Todorova TK; Patir IH; Olaya AJ; Vrubel H; Mendez M; Hu X; Corminboeuf C; Girault HH
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11558-63. PubMed ID: 22665787
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control.
    Ling L; Guo HL; Zhong XL; Huang L; Li JF; Gan L; Li ZY
    Nanotechnology; 2012 Jun; 23(21):215302. PubMed ID: 22551556
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.
    DeSario PA; Pietron JJ; DeVantier DE; Brintlinger TH; Stroud RM; Rolison DR
    Nanoscale; 2013 Sep; 5(17):8073-83. PubMed ID: 23877169
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dye-sensitized solar cells incorporating a "liquid" hole-transporting material.
    Snaith HJ; Zakeeruddin SM; Wang Q; Péchy P; Grätzel M
    Nano Lett; 2006 Sep; 6(9):2000-3. PubMed ID: 16968015
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Solar Water Splitting Utilizing a SiC Photocathode, a BiVO
    Iwase A; Kudo A; Numata Y; Ikegami M; Miyasaka T; Ichikawa N; Kato M; Hashimoto H; Inoue H; Ishitani O; Tamiaki H
    ChemSusChem; 2017 Nov; 10(22):4420-4423. PubMed ID: 28960942
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting.
    Qiu Y; Yan K; Deng H; Yang S
    Nano Lett; 2012 Jan; 12(1):407-13. PubMed ID: 22149105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode.
    Ma T; Akiyama M; Abe E; Imai I
    Nano Lett; 2005 Dec; 5(12):2543-7. PubMed ID: 16351212
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier.
    Gan Q; Bartoli FJ; Kafafi ZH
    Adv Mater; 2013 May; 25(17):2385-96. PubMed ID: 23417974
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hierarchical TiO2 microspheres comprised of anatase nanospindles for improved electron transport in dye-sensitized solar cells.
    Wu D; Wang Y; Dong H; Zhu F; Gao S; Jiang K; Fu L; Zhang J; Xu D
    Nanoscale; 2013 Jan; 5(1):324-30. PubMed ID: 23165289
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plasmonic nanoantennas for broad-band enhancement of two-photon emission from semiconductors.
    Nevet A; Berkovitch N; Hayat A; Ginzburg P; Ginzach S; Sorias O; Orenstein M
    Nano Lett; 2010 May; 10(5):1848-52. PubMed ID: 20397660
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasmonically enhanced hot electron based photovoltaic device.
    Atar FB; Battal E; Aygun LE; Daglar B; Bayindir M; Okyay AK
    Opt Express; 2013 Mar; 21(6):7196-201. PubMed ID: 23546103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons.
    Mubeen S; Lee J; Singh N; Krämer S; Stucky GD; Moskovits M
    Nat Nanotechnol; 2013 Apr; 8(4):247-51. PubMed ID: 23435280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.