These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22917461)

  • 1. First presentation of 3-dimensional reconstruction and centerline-guided assessment of coronary bifurcation by fusion of X-ray angiography and optical coherence tomography.
    Tu S; Holm NR; Christiansen EH; Reiber JH
    JACC Cardiovasc Interv; 2012 Aug; 5(8):884-5. PubMed ID: 22917461
    [No Abstract]   [Full Text] [Related]  

  • 2. A method for coronary bifurcation centerline reconstruction from angiographic images based on focalization optimization.
    Montin E; Migliori S; Chiastra C; Credi C; Fedele R; Aurigemma C; Levi M; Burzotta F; Migliavacca F; Mainardi LT
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4165-4168. PubMed ID: 28269200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instant stent-accentuated 3-dimensional optical coherence tomography of a bifurcation lesion treated with reverse minimum overlapping culotte stenting.
    Nakao F
    JACC Cardiovasc Interv; 2014 Sep; 7(9):e121-2. PubMed ID: 25129671
    [No Abstract]   [Full Text] [Related]  

  • 4. Three-dimensional spatial reconstruction of coronary arteries based on fusion of intravascular optical coherence tomography and coronary angiography.
    Zhu Y; Zhu F; Ding Z; Tao K; Lai T; Kuang H; Hua P; Shang M; Hu J; Yu Y; Liu T
    J Biophotonics; 2021 Mar; 14(3):e202000370. PubMed ID: 33247508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrochannel recanalisation of the right coronary artery visualised with three-dimensional optical frequency domain imaging.
    Obaid DR; Dorman S; Chase A; Smith D
    EuroIntervention; 2015 Dec; 11(8):e1. PubMed ID: 26696316
    [No Abstract]   [Full Text] [Related]  

  • 6. In vivo flow simulation at coronary bifurcation reconstructed by fusion of 3-dimensional X-ray angiography and optical coherence tomography.
    Tu S; Pyxaras SA; Li Y; Barbato E; Reiber JH; Wijns W
    Circ Cardiovasc Interv; 2013 Apr; 6(2):e15-7. PubMed ID: 23591422
    [No Abstract]   [Full Text] [Related]  

  • 7. Coronary stent fracture mechanisms and clinical implications assessed by multimodality imaging.
    Sgueglia GA; Ascarelli A; Todaro D; Cianni R; Pucci E
    Int J Cardiol; 2014 Nov; 177(1):e13-5. PubMed ID: 25129286
    [No Abstract]   [Full Text] [Related]  

  • 8. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography.
    Carlier S; Didday R; Slots T; Kayaert P; Sonck J; El-Mourad M; Preumont N; Schoors D; Van Camp G
    Cardiovasc Revasc Med; 2014 Jun; 15(4):226-32. PubMed ID: 24746102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal anatomy of the vessels of the heart with 16-row multislice computed tomography.
    Cademartiri F; Marano R; Luccichenti G; Mollet N; Nieman K; De Feyter PJ; Krestin GP; Bonomo L
    Radiol Med; 2004; 107(1-2):11-21; quiz 22-3. PubMed ID: 15031693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method of three-dimensional coronary artery reconstruction from X-ray angiography: validation against a virtual phantom and multislice computed tomography.
    Andriotis A; Zifan A; Gavaises M; Liatsis P; Pantos I; Theodorakakos A; Efstathopoulos EP; Katritsis D
    Catheter Cardiovasc Interv; 2008 Jan; 71(1):28-43. PubMed ID: 18098180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images.
    Bourantas CV; Kourtis IC; Plissiti ME; Fotiadis DI; Katsouras CS; Papafaklis MI; Michalis LK
    Comput Med Imaging Graph; 2005 Dec; 29(8):597-606. PubMed ID: 16278063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-registration of optical coherence tomography and X-ray angiography in percutaneous coronary intervention. the Does Optical Coherence Tomography Optimize Revascularization (DOCTOR) fusion study.
    Hebsgaard L; Nielsen TM; Tu S; Krusell LR; Maeng M; Veien KT; Raungaard B; Terkelsen CJ; Kaltoft A; Reiber JH; Lassen JF; Christiansen EH; Holm NR
    Int J Cardiol; 2015 Mar; 182():272-8. PubMed ID: 25585362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional flow reserve and coronary bifurcation anatomy: a novel quantitative model to assess and report the stenosis severity of bifurcation lesions.
    Tu S; Echavarria-Pinto M; von Birgelen C; Holm NR; Pyxaras SA; Kumsars I; Lam MK; Valkenburg I; Toth GG; Li Y; Escaned J; Wijns W; Reiber JH
    JACC Cardiovasc Interv; 2015 Apr; 8(4):564-74. PubMed ID: 25819180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image in cardiovascular medicine. Coronary artery imaging with flat-panel computed tomography.
    Knollmann F; Pfoh A
    Circulation; 2003 Mar; 107(8):1209. PubMed ID: 12615803
    [No Abstract]   [Full Text] [Related]  

  • 15. Optimized Computer-Aided Segmentation and Three-Dimensional Reconstruction Using Intracoronary Optical Coherence Tomography.
    Athanasiou L; Nezami FR; Galon MZ; Lopes AC; Lemos PA; de la Torre Hernandez JM; Ben-Assa E; Edelman ER
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):1168-1176. PubMed ID: 29969405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel hybrid approach for reconstruction of coronary bifurcations using angiography and OCT.
    Andrikos IO; Sakellarios AI; Siogkas PK; Rigas G; Exarchos TP; Athanasiou LS; Karanasos A; Toutouzas K; Tousoulis D; Michalis LK; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():588-591. PubMed ID: 29059941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Googling the coronary: fiberoptics and a computer provide the answers.
    Muller JE; Dixon SR
    JACC Cardiovasc Imaging; 2008 Nov; 1(6):762-4. PubMed ID: 19356513
    [No Abstract]   [Full Text] [Related]  

  • 18. Unfurling the coronary: a novel "flyover" 3-dimensional optical coherence tomography reconstruction method.
    Doherty J; Lowe HC
    JACC Cardiovasc Interv; 2013 May; 6(5):535-6. PubMed ID: 23702018
    [No Abstract]   [Full Text] [Related]  

  • 19. Normal and anomalous anatomy of the coronary arteries.
    Patel S
    Semin Roentgenol; 2008 Apr; 43(2):100-12. PubMed ID: 18329521
    [No Abstract]   [Full Text] [Related]  

  • 20. Impact of Side Branch Modeling on Computation of Endothelial Shear Stress in Coronary Artery Disease: Coronary Tree Reconstruction by Fusion of 3D Angiography and OCT.
    Li Y; Gutiérrez-Chico JL; Holm NR; Yang W; Hebsgaard L; Christiansen EH; Mæng M; Lassen JF; Yan F; Reiber JH; Tu S
    J Am Coll Cardiol; 2015 Jul; 66(2):125-35. PubMed ID: 26160628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.