These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22917527)

  • 1. Fos expression in the prefrontal cortex and ventral striatum after exposure to a free-operant timing schedule.
    Valencia-Torres L; Olarte-Sánchez CM; Body S; Cheung TH; Fone KC; Bradshaw CM; Szabadi E
    Behav Brain Res; 2012 Dec; 235(2):273-9. PubMed ID: 22917527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fos expression in the orbital prefrontal cortex after exposure to the fixed-interval peak procedure.
    Valencia-Torres L; Olarte-Sánchez CM; Body S; Fone KC; Bradshaw CM; Szabadi E
    Behav Brain Res; 2012 Apr; 229(2):372-7. PubMed ID: 22301352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Choice between reinforcer delays versus choice between reinforcer magnitudes: differential Fos expression in the orbital prefrontal cortex and nucleus accumbens core.
    da Costa Araújo S; Body S; Valencia Torres L; Olarte Sanchez CM; Bak VK; Deakin JF; Anderson IM; Bradshaw CM; Szabadi E
    Behav Brain Res; 2010 Dec; 213(2):269-77. PubMed ID: 20570596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fos expression in the prefrontal cortex and nucleus accumbens following exposure to retrospective timing tasks.
    Valencia Torres L; Olarte Sánchez CM; Body S; Fone KC; Bradshaw CM; Szabadi E
    Behav Neurosci; 2011 Apr; 125(2):202-14. PubMed ID: 21341886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct Fos-Expressing Neuronal Ensembles in the Ventromedial Prefrontal Cortex Mediate Food Reward and Extinction Memories.
    Warren BL; Mendoza MP; Cruz FC; Leao RM; Caprioli D; Rubio FJ; Whitaker LR; McPherson KB; Bossert JM; Shaham Y; Hope BT
    J Neurosci; 2016 Jun; 36(25):6691-703. PubMed ID: 27335401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of orbital prefrontal cortex lesions on performance on a progressive ratio schedule: implications for models of inter-temporal choice.
    Kheramin S; Body S; Herrera FM; Bradshaw CM; Szabadi E; Deakin JF; Anderson IM
    Behav Brain Res; 2005 Jan; 156(1):145-52. PubMed ID: 15474659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic interaction between medial prefrontal cortex and nucleus accumbens as a function of both motivational state and reinforcer magnitude: a c-Fos immunocytochemistry study.
    Moscarello JM; Ben-Shahar O; Ettenberg A
    Brain Res; 2007 Sep; 1169():69-76. PubMed ID: 17706947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of food deprivation on goal-directed behavior, spontaneous locomotion, and c-Fos immunoreactivity in the amygdala.
    Moscarello JM; Ben-Shahar O; Ettenberg A
    Behav Brain Res; 2009 Jan; 197(1):9-15. PubMed ID: 18706934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of disconnecting the orbital prefrontal cortex from the nucleus accumbens core on inter-temporal choice behaviour: a quantitative analysis.
    Bezzina G; Body S; Cheung TH; Hampson CL; Bradshaw CM; Szabadi E; Anderson IM; Deakin JF
    Behav Brain Res; 2008 Aug; 191(2):272-9. PubMed ID: 18472170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of d-amphetamine on performance on two operant timing schedules.
    Chiang TJ; Al-Ruwaitea AS; Mobini S; Ho MY; Bradshaw CM; Szabadi E
    Psychopharmacology (Berl); 2000 Jun; 150(2):170-84. PubMed ID: 10907670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in nucleus accumbens and neostriatal c-Fos and DARPP-32 immunoreactivity during different stages of food-reinforced instrumental training.
    Segovia KN; Correa M; Lennington JB; Conover JC; Salamone JD
    Eur J Neurosci; 2012 Apr; 35(8):1354-67. PubMed ID: 22462413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) on performance on two operant timing schedules.
    Chiang TJ; Al-Ruwaitea AS; Mobini S; Ho MY; Bradshaw CM; Szabadi E
    Psychopharmacology (Berl); 2000 Sep; 151(4):379-91. PubMed ID: 11026745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of quinolinic acid-induced lesions of the orbital prefrontal cortex on inter-temporal choice: a quantitative analysis.
    Kheramin S; Body S; Mobini S; Ho MY; Velázquez-Martinez DN; Bradshaw CM; Szabadi E; Deakin JF; Anderson IM
    Psychopharmacology (Berl); 2002 Dec; 165(1):9-17. PubMed ID: 12474113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of orbital prefrontal cortex dopamine depletion on inter-temporal choice: a quantitative analysis.
    Kheramin S; Body S; Ho MY; Velázquez-Martinez DN; Bradshaw CM; Szabadi E; Deakin JF; Anderson IM
    Psychopharmacology (Berl); 2004 Sep; 175(2):206-14. PubMed ID: 14991223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-operant performance on variable interval schedules with a linear feedback loop: no evidence for molar sensitivities in rats.
    Reed P; Soh M; Hildebrandt T; DeJongh J; Shek WY
    J Exp Psychol Anim Behav Process; 2000 Oct; 26(4):416-27. PubMed ID: 11056882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shifts in the psychophysical function in rats.
    Guilhardi P; Macinnis ML; Church RM; Machado A
    Behav Processes; 2007 Jun; 75(2):167-75. PubMed ID: 17360131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fos activation of selective afferents to ventral tegmental area during cue-induced reinstatement of cocaine seeking in rats.
    Mahler SV; Aston-Jones GS
    J Neurosci; 2012 Sep; 32(38):13309-26. PubMed ID: 22993446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct contributions of dopamine in the dorsolateral striatum and nucleus accumbens shell to the reinforcing properties of cocaine.
    Veeneman MM; Broekhoven MH; Damsteegt R; Vanderschuren LJ
    Neuropsychopharmacology; 2012 Jan; 37(2):487-98. PubMed ID: 21918505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroanatomical specificity of conditioned responses to cocaine versus food in mice.
    Zombeck JA; Chen GT; Johnson ZV; Rosenberg DM; Craig AB; Rhodes JS
    Physiol Behav; 2008 Feb; 93(3):637-50. PubMed ID: 18155256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. External incentives and internal states guide goal-directed behavior via the differential recruitment of the nucleus accumbens and the medial prefrontal cortex.
    Moscarello JM; Ben-Shahar O; Ettenberg A
    Neuroscience; 2010 Oct; 170(2):468-77. PubMed ID: 20638448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.