These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2291776)

  • 1. Ketamine antagonizes toxic action of anticholinesterase agents.
    Contreras CM; Marvan ML; Mexicano G; Puente A; Morfin A
    Bol Estud Med Biol; 1990; 38(1-2):10-5. PubMed ID: 2291776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative seizure inducing properties of various cholinesterase inhibitors: antagonism by diazepam and midazolam.
    Domino EF
    Neurotoxicology; 1987; 8(1):113-22. PubMed ID: 3561897
    [No Abstract]   [Full Text] [Related]  

  • 3. Activation and blockade of cardiac muscarinic receptors by endogenous acetylcholine and cholinesterase inhibitors.
    Brown JH; Wetzel GT; Dunlap J
    J Pharmacol Exp Ther; 1982 Oct; 223(1):20-4. PubMed ID: 6288918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Milameline (CI-979/RU35926): a muscarinic receptor agonist with cognition-activating properties: biochemical and in vivo characterization.
    Schwarz RD; Callahan MJ; Coughenour LL; Dickerson MR; Kinsora JJ; Lipinski WJ; Raby CA; Spencer CJ; Tecle H
    J Pharmacol Exp Ther; 1999 Nov; 291(2):812-22. PubMed ID: 10525104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antagonism of acute physostigmine and neostigmine toxicity in mice by hemicholinium-3.
    Lin J; Freeman JJ; Kosh JW
    Res Commun Chem Pathol Pharmacol; 1987 Apr; 56(1):137-40. PubMed ID: 3589150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The multiple effects of ketamine on electroencephalographic activity and behavior in WAG/Rij rats.
    Midzyanovskaya IS; Salonin DV; Bosnyakova DY; Kuznetsova GD; van Luijtelaar EL
    Pharmacol Biochem Behav; 2004 Sep; 79(1):83-91. PubMed ID: 15388287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparison of anticholinesterase activity and the effectiveness of anticholinesterase substances].
    ProzorovskÄ­ VB; Artem'ev VS; TonkopiÄ­ VD; Konstorum MG
    Farmakol Toksikol; 1975; 38(4):402-6. PubMed ID: 1213123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ketamine racemate versus S-(+)-ketamine with or without antagonism with physostigmine. A quantitative EEG study on volunteers].
    Engelhardt W; Stahl K; Marouche A; Hartung E; Dierks T
    Anaesthesist; 1994 Nov; 43 Suppl 2():S76-82. PubMed ID: 7840418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro effects of organophosphorus anticholinesterases on muscarinic receptor-mediated inhibition of acetylcholine release in rat striatum.
    Liu J; Chakraborti T; Pope C
    Toxicol Appl Pharmacol; 2002 Jan; 178(2):102-8. PubMed ID: 11814330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased colonic transit in rats produced by a combination of a cholinesterase inhibitor with a 5-HT4 receptor agonist.
    Campbell-Dittmeyer K; Hicks GA; Earnest DL; Greenwood-Van Meerveld B
    Neurogastroenterol Motil; 2009 Nov; 21(11):1197-e108. PubMed ID: 19210632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of morphine state-dependent learning by muscarinic cholinergic receptors of the ventral tegmental area.
    Darbandi N; Rezayof A; Zarrindast MR
    Physiol Behav; 2008 Jul; 94(4):604-10. PubMed ID: 18479719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticonvulsant effects of phencynonate hydrochloride and other anticholinergic drugs in soman poisoning: neurochemical mechanisms.
    Wang YA; Zhou WX; Li JX; Liu YQ; Yue YJ; Zheng JQ; Liu KL; Ruan JX
    Life Sci; 2005 Nov; 78(2):210-23. PubMed ID: 16154160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphine-induced place preference: involvement of cholinergic receptors of the ventral tegmental area.
    Rezayof A; Nazari-Serenjeh F; Zarrindast MR; Sepehri H; Delphi L
    Eur J Pharmacol; 2007 May; 562(1-2):92-102. PubMed ID: 17336285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversal by atropine of tetanic fade induced in cats by antinicotinic and anticholinesterase agents.
    Alves-do-Prado W; Corrado AP; Prado WA
    Anesth Analg; 1987 Jun; 66(6):492-6. PubMed ID: 2883915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for screening drug and chemical effects in laboratory rats using computerized quantitative electroencephalography.
    Jones RD; Sheets LP; Mueller RE
    Vet Hum Toxicol; 1996 Feb; 38(1):1-7. PubMed ID: 8825739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of cholinesterase inhibitors and glucocorticoids with ketamine and pentobarbitone-induced general anaesthesia in the rat: possible effects on central cholinergic activity.
    Leeuwin RS; van der Wal JK; Spanjer W
    Br J Pharmacol; 1984 Jun; 82(2):339-47. PubMed ID: 6733361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic modulation of intrinsic fibre-evoked excitatory transmission contains a nicotinic component in immature but not adult rat piriform cortex, in vitro.
    Patel NA; Weston SE; Constanti A; Halliwell JV; Whalley BJ
    Neurosci Lett; 2007 Sep; 425(1):43-8. PubMed ID: 17723269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ketamine inhibits the anticholinesterase activity of ranitidine and physostigmine.
    Kounenis G; Koutsoviti-Papadopoulou M; Elezoglou V
    Gen Pharmacol; 1994 Jul; 25(4):631-4. PubMed ID: 7958721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A heat-stressed rat model to determine relative anticholinergic and anticholinesterase drug potency.
    Matthew CB; Hubbard RW; Francesconi RP
    Aviat Space Environ Med; 1986 Nov; 57(11):1061-5. PubMed ID: 3790025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The post-training memory enhancement induced by physostigmine and oxotremorine in mice is not state-dependent.
    Baratti CM; Kopf SR
    Neurobiol Learn Mem; 1996 Mar; 65(2):121-4. PubMed ID: 8833101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.