These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22918232)

  • 1. Regioselective placement of alkanethiolate domains on tetrahedral and octahedral gold nanocrystals.
    Wang Y; Zeiri O; Meshi L; Stellacci F; Weinstock IA
    Chem Commun (Camb); 2012 Oct; 48(78):9765-7. PubMed ID: 22918232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleation and island growth of alkanethiolate ligand domains on gold nanoparticles.
    Wang Y; Zeiri O; Neyman A; Stellacci F; Weinstock IA
    ACS Nano; 2012 Jan; 6(1):629-40. PubMed ID: 22136457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the alkali-metal cation size in the self-assembly of polyoxometalate-monolayer shells on gold nanoparticles.
    Wang Y; Zeiri O; Sharet S; Weinstock IA
    Inorg Chem; 2012 Jul; 51(14):7436-8. PubMed ID: 22515560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiolate ligands for synthesis of water-soluble gold clusters.
    Ackerson CJ; Jadzinsky PD; Kornberg RD
    J Am Chem Soc; 2005 May; 127(18):6550-1. PubMed ID: 15869273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of gold nanoparticles via a thiol functionalized polyoxometalate.
    Hegde S; Joshi S; Mukherjee T; Kapoor S
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2332-7. PubMed ID: 23498266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation-assisted laser desorption/ionization for matrix-free surface mass spectrometry of alkanethiolate self-assembled monolayers on gold substrates and nanoparticles.
    Ha TK; Lee TG; Song NW; Moon DW; Han SY
    Anal Chem; 2008 Nov; 80(22):8526-31. PubMed ID: 18847282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive adsorption of thiolated poly(ethylene glycol) and alkane-thiols on gold nanoparticles and its effect on cluster formation.
    Larson-Smith K; Pozzo DC
    Langmuir; 2012 Sep; 28(37):13157-65. PubMed ID: 22924831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water-soluble amphiphilic gold nanoparticles with structured ligand shells.
    Uzun O; Hu Y; Verma A; Chen S; Centrone A; Stellacci F
    Chem Commun (Camb); 2008 Jan; (2):196-8. PubMed ID: 18092085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-soluble gold nanoparticles protected by fluorinated amphiphilic thiolates.
    Gentilini C; Evangelista F; Rudolf P; Franchi P; Lucarini M; Pasquato L
    J Am Chem Soc; 2008 Nov; 130(46):15678-82. PubMed ID: 18950162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape-controlled synthesis of NIR absorbing branched gold nanoparticles and morphology stabilization with alkanethiols.
    Van de Broek B; Frederix F; Bonroy K; Jans H; Jans K; Borghs G; Maes G
    Nanotechnology; 2011 Jan; 22(1):015601. PubMed ID: 21135459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and electrostatics of mercaptoundecanoic acid-capped gold nanoparticles with varying counterion size.
    Laaksonen T; Ahonen P; Johans C; Kontturi K
    Chemphyschem; 2006 Oct; 7(10):2143-9. PubMed ID: 16969881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-soluble nanocrystals through dual-interaction ligands.
    Wu H; Zhu H; Zhuang J; Yang S; Liu C; Cao YC
    Angew Chem Int Ed Engl; 2008; 47(20):3730-4. PubMed ID: 18399517
    [No Abstract]   [Full Text] [Related]  

  • 13. Integration of gold nanoparticles into bilayer structures via adaptive surface chemistry.
    Lee HY; Shin SH; Abezgauz LL; Lewis SA; Chirsan AM; Danino DD; Bishop KJ
    J Am Chem Soc; 2013 Apr; 135(16):5950-3. PubMed ID: 23565704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the Role of Capping Molecules in Controlling Aggregative Growth of Gold Nanoparticles in Heated Solution.
    Cheng HW; Schadt MJ; Zhong CJ
    Chem Asian J; 2016 Jan; 11(1):120-7. PubMed ID: 26444313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Close-packed monolayers of charged Janus-type nanoparticles at the air-water interface.
    Sashuk V; Hołyst R; Wojciechowski T; Fiałkowski M
    J Colloid Interface Sci; 2012 Jun; 375(1):180-6. PubMed ID: 22440729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Five years of siRNA delivery: spotlight on gold nanoparticles.
    Lytton-Jean AK; Langer R; Anderson DG
    Small; 2011 Jul; 7(14):1932-7. PubMed ID: 21681985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-phase synthesis of water-soluble gold nanoparticles with control over size and surface functionalities.
    Oh E; Susumu K; Goswami R; Mattoussi H
    Langmuir; 2010 May; 26(10):7604-13. PubMed ID: 20121172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly between gold-thiolate nanoparticles and the organometallic cluster [Fe(eta5-C5H5)(mu3-CO)]4 toward redox sensing of oxo-anions.
    Aranzaes JR; Belin C; Astruc D
    Chem Commun (Camb); 2007 Sep; (33):3456-8. PubMed ID: 17700880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced catalytic activity of self-assembled-monolayer-capped gold nanoparticles.
    Taguchi T; Isozaki K; Miki K
    Adv Mater; 2012 Dec; 24(48):6462-7. PubMed ID: 22968900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freezing the self-assembly process of gold nanocrystals.
    Abbas A; Tian L; Kattumenu R; Halim A; Singamaneni S
    Chem Commun (Camb); 2012 Feb; 48(11):1677-9. PubMed ID: 22187049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.