These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 22918522)

  • 1. Studies of cavitation and ice nucleation in 'doubly-metastable' water: time-lapse photography and neutron diffraction.
    Barrow MS; Williams PR; Chan HH; Dore JC; Bellissent-Funel MC
    Phys Chem Chem Phys; 2012 Oct; 14(38):13255-61. PubMed ID: 22918522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on the primary and secondary nucleation of ice by power ultrasound.
    Chow R; Blindt R; Chivers R; Povey M
    Ultrasonics; 2005 Feb; 43(4):227-30. PubMed ID: 15567197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociation behavior of C2H6 hydrate at temperatures below the ice point: melting to liquid water followed by ice nucleation.
    Ohno H; Oyabu I; Iizuka Y; Hondoh T; Narita H; Nagao J
    J Phys Chem A; 2011 Aug; 115(32):8889-94. PubMed ID: 21744826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions.
    Koop T; Luo B; Tsias A; Peter T
    Nature; 2000 Aug; 406(6796):611-4. PubMed ID: 10949298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical model of ice nucleation induced by inertial acoustic cavitation. Part 2: Number of ice nuclei generated by a single bubble.
    Cogné C; Labouret S; Peczalski R; Louisnard O; Baillon F; Espitalier F
    Ultrason Sonochem; 2016 Jan; 28():185-191. PubMed ID: 26384898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water.
    Singh RS; Bagchi B
    J Chem Phys; 2014 Apr; 140(16):164503. PubMed ID: 24784283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of the phase diagram of liquid water in the low-temperature metastable region using synthetic fluid inclusions.
    Qiu C; Krüger Y; Wilke M; Marti D; Rička J; Frenz M
    Phys Chem Chem Phys; 2016 Oct; 18(40):28227-28241. PubMed ID: 27711498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat of freezing for supercooled water: measurements at atmospheric pressure.
    Cantrell W; Kostinski A; Szedlak A; Johnson A
    J Phys Chem A; 2011 Jun; 115(23):5729-34. PubMed ID: 21087023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation of ice and its management in ecosystems.
    Franks F
    Philos Trans A Math Phys Eng Sci; 2003 Mar; 361(1804):557-74; discussion 574. PubMed ID: 12662454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water.
    Smith RS; Petrik NG; Kimmel GA; Kay BD
    Acc Chem Res; 2012 Jan; 45(1):33-42. PubMed ID: 21627126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of water and ice in mesoporous SBA-15 silicas: II. The 'almost-filled' case for 86 Å pore diameter.
    Seyed-Yazdi J; Farman H; Dore JC; Webber JB; Findenegg GH; Hansen T
    J Phys Condens Matter; 2008 May; 20(20):205107. PubMed ID: 21694288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of ultrasonic waves on the nucleation of pure water and degassed water.
    Yu D; Liu B; Wang B
    Ultrason Sonochem; 2012 May; 19(3):459-63. PubMed ID: 21925917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic-induced nucleation of ice in water containing air bubbles.
    Zhang X; Inada T; Tezuka A
    Ultrason Sonochem; 2003 Mar; 10(2):71-6. PubMed ID: 12551765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hexagonal ice transforms at high pressures and compression rates directly into "doubly metastable" ice phases.
    Bauer M; Winkel K; Toebbens DM; Mayer E; Loerting T
    J Chem Phys; 2009 Dec; 131(22):224514. PubMed ID: 20001064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pressure on thermal conductivity and pressure collapse of ice in a polymer-hydrogel and kinetic unfreezing at 1 GPa.
    Andersson O; Johari GP
    J Chem Phys; 2011 Mar; 134(12):124903. PubMed ID: 21456699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The formation of cubic ice under conditions relevant to Earth's atmosphere.
    Murray BJ; Knopf DA; Bertram AK
    Nature; 2005 Mar; 434(7030):202-5. PubMed ID: 15758996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metastable states of water and ice during pressure-supported freezing of potato tissue.
    Schlüter O; Benet GU; Heinz V; Knorr D
    Biotechnol Prog; 2004; 20(3):799-810. PubMed ID: 15176885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanosecond freezing of water under multiple shock wave compression: optical transmission and imaging measurements.
    Dolan DH; Gupta YM
    J Chem Phys; 2004 Nov; 121(18):9050-7. PubMed ID: 15527371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutron diffraction study of water freezing on aircraft engine combustor soot.
    Tishkova V; Demirdjian B; Ferry D; Johnson M
    Phys Chem Chem Phys; 2011 Dec; 13(46):20729-35. PubMed ID: 21996755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A calorimetric study on the low temperature dynamics of doped ice V and its reversible phase transition to hydrogen ordered ice XIII.
    Salzmann CG; Radaelli PG; Finney JL; Mayer E
    Phys Chem Chem Phys; 2008 Nov; 10(41):6313-24. PubMed ID: 18936855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.