BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22918717)

  • 1. Hand-rim forces and gross mechanical efficiency at various frequencies of wheelchair propulsion.
    Lenton JP; van der Woude LH; Fowler NE; Nicholson G; Tolfrey K; Goosey-Tolfrey VL
    Int J Sports Med; 2013 Feb; 34(2):158-64. PubMed ID: 22918717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison.
    Lenton JP; van der Woude L; Fowler N; Nicholson G; Tolfrey K; Goosey-Tolfrey V
    Int J Sports Med; 2014 Mar; 35(3):223-31. PubMed ID: 23945971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of arm frequency during synchronous and asynchronous wheelchair propulsion on efficiency.
    Lenton JP; van der Woude L; Fowler N; Goosey-Tolfrey V
    Int J Sports Med; 2009 Apr; 30(4):233-9. PubMed ID: 19199211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wheelchair propulsion: effects of experience and push strategy on efficiency and perceived exertion.
    Lenton JP; Fowler NE; van der Woude L; Goosey-Tolfrey VL
    Appl Physiol Nutr Metab; 2008 Oct; 33(5):870-9. PubMed ID: 18923561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical efficiency during hand-rim wheelchair propulsion: effects of base-line subtraction and power output.
    Hintzy F; Tordi N
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):343-9. PubMed ID: 15109753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency of wheelchair propulsion and effects of strategy.
    Lenton JP; Fowler N; van der Woude L; Goosey-Tolfrey VL
    Int J Sports Med; 2008 May; 29(5):384-9. PubMed ID: 17879885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of varied tempo music on wheelchair mechanical efficiency following 3-week practice.
    Goosey-Tolfrey VL; West M; Lenton JP; Tolfrey K
    Int J Sports Med; 2011 Feb; 32(2):126-31. PubMed ID: 21165800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of push frequency on the economy of wheelchair racers.
    Goosey VL; Campbell IG; Fowler NE
    Med Sci Sports Exerc; 2000 Jan; 32(1):174-81. PubMed ID: 10647546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion.
    de Groot S; Veeger HE; Hollander AP; van der Woude LH
    Med Eng Phys; 2005 Jan; 27(1):41-9. PubMed ID: 15604003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is effective force application in handrim wheelchair propulsion also efficient?
    Bregman DJ; van Drongelen S; Veeger HE
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):13-9. PubMed ID: 18990473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degree of coordination between breathing and rhythmic arm movements during hand rim wheelchair propulsion.
    Fabre N; Perrey S; Arbez L; Ruiz J; Tordi N; Rouillon JD
    Int J Sports Med; 2006 Jan; 27(1):67-74. PubMed ID: 16388445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptations in physiology and propulsion techniques during the initial phase of learning manual wheelchair propulsion.
    de Groot S; Veeger HE; Hollander AP; van der Woude LH
    Am J Phys Med Rehabil; 2003 Jul; 82(7):504-10. PubMed ID: 12819537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique.
    van der Woude LH; Veeger HE; Rozendal RH; Sargeant AJ
    Eur J Appl Physiol Occup Physiol; 1989; 58(6):625-32. PubMed ID: 2731532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training.
    de Groot S; de Bruin M; Noomen SP; van der Woude LH
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):434-41. PubMed ID: 18077065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex differences in wheelchair propulsion biomechanics and mechanical efficiency in novice young able-bodied adults.
    Chaikhot D; Taylor MJD; Hettinga FJ
    Eur J Sport Sci; 2018 Jun; 18(5):650-658. PubMed ID: 29533156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of wheel and hand-rim size on submaximal propulsion in wheelchair athletes.
    Mason BS; Van Der Woude LH; Tolfrey K; Lenton JP; Goosey-Tolfrey VL
    Med Sci Sports Exerc; 2012 Jan; 44(1):126-34. PubMed ID: 21701409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force-velocity characteristics of upper limb extension during maximal wheelchair sprinting performed by healthy able-bodied females.
    Hintzy F; Tordi N; Predine E; Rouillon JD; Belli A
    J Sports Sci; 2003 Nov; 21(11):921-6. PubMed ID: 14626371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of 4-weeks of asynchronous hand-rim wheelchair practice on mechanical efficiency and timing.
    Lenton JP; Van Der Woude LH; Fowler NE; Goosey-Tolfrey V
    Disabil Rehabil; 2010; 32(26):2155-64. PubMed ID: 20731561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel push-pull central-lever mechanism reduces peak forces and energy-cost compared to hand-rim wheelchair propulsion during a controlled lab-based experiment.
    le Rütte TA; Trigo F; Bessems L; van der Woude LHV; Vegter RJK
    J Neuroeng Rehabil; 2022 Mar; 19(1):30. PubMed ID: 35300710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion.
    Veeger HE; van der Woude LH; Rozendal RH
    Med Sci Sports Exerc; 1992 Jan; 24(1):100-7. PubMed ID: 1548983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.