BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 22918815)

  • 41. Efficient derivation and inducible differentiation of expandable skeletal myogenic cells from human ES and patient-specific iPS cells.
    Maffioletti SM; Gerli MF; Ragazzi M; Dastidar S; Benedetti S; Loperfido M; VandenDriessche T; Chuah MK; Tedesco FS
    Nat Protoc; 2015 Jul; 10(7):941-58. PubMed ID: 26042384
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Srf: a key factor controlling skeletal muscle hypertrophy by enhancing the recruitment of muscle stem cells].
    Guerci A; Lahoute C; Hébrard S; Collard L; Daegelen D; Sotiropoulos A
    Med Sci (Paris); 2012 May; 28(5):468-70. PubMed ID: 22642997
    [No Abstract]   [Full Text] [Related]  

  • 43. Therapeutic potential of motor neurons differentiated from embryonic stem cells and induced pluripotent stem cells.
    López-González R; Velasco I
    Arch Med Res; 2012 Jan; 43(1):1-10. PubMed ID: 22293229
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Myogenic differentiation in atrium-derived adult cardiac pluripotent cells and the transcriptional regulation of GATA4 and myogenin on ANP promoter.
    Kamrul Hasan M; Komoike Y; Tsunesumi S; Nakao R; Nagao H; Matsuoka R; Kawaguchi N
    Genes Cells; 2010 May; 15(5):439-54. PubMed ID: 20384792
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mesoderm cell development from ES cells.
    Era T
    Methods Mol Biol; 2010; 636():87-103. PubMed ID: 20336518
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Induced pluripotency of mouse and human somatic cells.
    Maherali N; Hochedlinger K
    Cold Spring Harb Symp Quant Biol; 2008; 73():157-62. PubMed ID: 19022751
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expansion of pluripotent human embryonic stem cells on human feeders.
    Choo AB; Padmanabhan J; Chin AC; Oh SK
    Biotechnol Bioeng; 2004 Nov; 88(3):321-31. PubMed ID: 15486939
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Renal differentiation of amniotic fluid stem cells: perspectives for clinical application and for studies on specific human genetic diseases.
    Rosner M; Schipany K; Gundacker C; Shanmugasundaram B; Li K; Fuchs C; Lubec G; Hengstschläger M
    Eur J Clin Invest; 2012 Jun; 42(6):677-84. PubMed ID: 22060053
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Skeletal muscle stem cells.
    Buckingham M; Montarras D
    Curr Opin Genet Dev; 2008 Aug; 18(4):330-6. PubMed ID: 18625314
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interleukin 4 Moderately Affects Competence of Pluripotent Stem Cells for Myogenic Conversion.
    Świerczek-Lasek B; Neska J; Kominek A; Tolak Ł; Czajkowski T; Jańczyk-Ilach K; Stremińska W; Piwocka K; Ciemerych MA; Archacka K
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31412558
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Derivation and characterization of neuronal precursors and dopaminergic neurons from human embryonic stem cells in vitro.
    Carpenter M; Rao MS; Freed W; Zeng X
    Methods Mol Biol; 2006; 331():153-67. PubMed ID: 16881516
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Myogenic Progenitors from Mouse Pluripotent Stem Cells for Muscle Regeneration.
    Magli A; Incitti T; Perlingeiro RC
    Methods Mol Biol; 2016; 1460():191-208. PubMed ID: 27492174
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differentiation of pluripotent stem cells for regenerative medicine.
    Li K; Kong Y; Zhang M; Xie F; Liu P; Xu S
    Biochem Biophys Res Commun; 2016 Feb; 471(1):1-4. PubMed ID: 26851367
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Derivation of dopaminergic neurons from pluripotent stem cells.
    Studer L
    Prog Brain Res; 2012; 200():243-63. PubMed ID: 23195422
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Directed Differentiation of Human Pluripotent Stem Cells toward Skeletal Myogenic Progenitors and Their Purification Using Surface Markers.
    Xu N; Wu J; Ortiz-Vitali JL; Li Y; Darabi R
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685726
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Generation of motor neurons from pluripotent stem cells.
    Chipman PH; Toma JS; Rafuse VF
    Prog Brain Res; 2012; 201():313-31. PubMed ID: 23186721
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Selective development of myogenic mesenchymal cells from human embryonic and induced pluripotent stem cells.
    Awaya T; Kato T; Mizuno Y; Chang H; Niwa A; Umeda K; Nakahata T; Heike T
    PLoS One; 2012; 7(12):e51638. PubMed ID: 23236522
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Status of human germ cell differentiation from pluripotent stem cells.
    Pera RA
    Reprod Fertil Dev; 2013; 25(2):396-404. PubMed ID: 23445816
    [TBL] [Abstract][Full Text] [Related]  

  • 59. From myth to reality: lessons learned from the first experiments.
    Chiu RC
    Int J Cardiol; 2004 Jun; 95 Suppl 1():S3-4. PubMed ID: 15336834
    [No Abstract]   [Full Text] [Related]  

  • 60. MYOD modified mRNA drives direct on-chip programming of human pluripotent stem cells into skeletal myocytes.
    Selmin G; Gagliano O; De Coppi P; Serena E; Urciuolo A; Elvassore N
    Biochem Biophys Res Commun; 2021 Jun; 560():139-145. PubMed ID: 33989905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.