These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22918906)

  • 21. Compensatory mechanism involving the hip joint of the intact limb during gait in unilateral trans-tibial amputees.
    Grumillier C; Martinet N; Paysant J; André JM; Beyaert C
    J Biomech; 2008 Oct; 41(14):2926-31. PubMed ID: 18771768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic elastic response prostheses alter approach angles and ground reaction forces but not leg stiffness during a start-stop task.
    Haber CK; Ritchie LJ; Strike SC
    Hum Mov Sci; 2018 Apr; 58():337-346. PubMed ID: 29269103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long jumpers with and without a transtibial amputation have different three-dimensional centre of mass and joint take-off step kinematics.
    Funken J; Willwacher S; Heinrich K; Müller R; Hobara H; Grabowski AM; Potthast W
    R Soc Open Sci; 2019 Apr; 6(4):190107. PubMed ID: 31183149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees.
    Beyaert C; Grumillier C; Martinet N; Paysant J; André JM
    Gait Posture; 2008 Aug; 28(2):278-84. PubMed ID: 18295487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new methodology to measure the running biomechanics of amputees.
    Wilson JR; Asfour S; Abdelrahman KZ; Gailey R
    Prosthet Orthot Int; 2009 Sep; 33(3):218-29. PubMed ID: 19658012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of transtibial amputee and non-amputee biomechanics during a common turning task.
    Segal AD; Orendurff MS; Czerniecki JM; Schoen J; Klute GK
    Gait Posture; 2011 Jan; 33(1):41-7. PubMed ID: 20974535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mechanics of landing when stepping down in unilateral lower-limb amputees.
    Jones SF; Twigg PC; Scally AJ; Buckley JG
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):184-93. PubMed ID: 16274904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A three-dimensional kinematic analysis of the long jump take-off.
    Graham-Smith P; Lees A
    J Sports Sci; 2005 Sep; 23(9):891-903. PubMed ID: 16195041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of mass and momentum of inertia alternation on individual muscle forces during swing phase of transtibial amputee gait.
    Dabiri Y; Najarian S; Eslami MR; Zahedi S; Moser D; Shirzad E; Allami M
    Kobe J Med Sci; 2010 Sep; 56(3):E92-7. PubMed ID: 21063155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical adaptations of transtibial amputee sprinting in athletes using dedicated prostheses.
    Buckley JG
    Clin Biomech (Bristol, Avon); 2000 Jun; 15(5):352-8. PubMed ID: 10758296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How the free limbs are used by elite high jumpers in generating vertical velocity.
    Lees A; Rojas J; Ceperos M; Soto V; Gutierrez M
    Ergonomics; 2000 Oct; 43(10):1622-36. PubMed ID: 11083142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stair ascent kinematics and kinetics with a powered lower leg system following transtibial amputation.
    Aldridge JM; Sturdy JT; Wilken JM
    Gait Posture; 2012 Jun; 36(2):291-5. PubMed ID: 22571821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in muscle-tendon length during the take-off of a running long jump.
    Hay JG; Thorson EM; Kippenhan BC
    J Sports Sci; 1999 Feb; 17(2):159-72. PubMed ID: 10069273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduced prosthetic stiffness lowers the metabolic cost of running for athletes with bilateral transtibial amputations.
    Beck ON; Taboga P; Grabowski AM
    J Appl Physiol (1985); 2017 Apr; 122(4):976-984. PubMed ID: 28104752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The biomechanical effect of arm mass on long jump performance: A case study of a paralympic upper limb amputee.
    Pradon D; Mazure-Bonnefoy A; Rabita G; Hutin E; Zory R; Slawinski J
    Prosthet Orthot Int; 2014 Jun; 38(3):248-52. PubMed ID: 23986469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immediate effects of the use of modified take-off boards on the take-off motion of the long jump during training.
    Koyama H; Muraki Y; Ae M
    Sports Biomech; 2006 Jul; 5(2):139-53. PubMed ID: 16939149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variability of kinetic variables during gait in unilateral transtibial amputees.
    Svoboda Z; Janura M; Cabell L; Elfmark M
    Prosthet Orthot Int; 2012 Jun; 36(2):225-30. PubMed ID: 22440580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimum take-off angle in the long jump.
    Linthorne NP; Guzman MS; Bridgett LA
    J Sports Sci; 2005 Jul; 23(7):703-12. PubMed ID: 16195020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations.
    Taboga P; Kram R; Grabowski AM
    J Exp Biol; 2016 Mar; 219(Pt 6):851-8. PubMed ID: 26985053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.