These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 22918934)
1. A pilot study comparing two polymethylpentene extracorporeal membrane oxygenators. Rambaud J; Guilbert J; Guellec I; Renolleau S Perfusion; 2013 Jan; 28(1):14-20. PubMed ID: 22918934 [TBL] [Abstract][Full Text] [Related]
2. Building a Better Neonatal Extracorporeal Life Support Circuit: Comparison of Hemodynamic Performance and Gaseous Microemboli Handling in Different Pump and Oxygenator Technologies. Glass K; Trivedi P; Wang S; Woitas K; Kunselman AR; Ündar A Artif Organs; 2017 Apr; 41(4):392-400. PubMed ID: 28397410 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the Maquet Neonatal and Pediatric Quadrox I with an integrated arterial line filter during cardiopulmonary bypass. Melchior RW; Schiavo K; Frey T; Rogers D; Patel J; Chelnik K; Rosenthal T Perfusion; 2012 Sep; 27(5):399-406. PubMed ID: 22717608 [TBL] [Abstract][Full Text] [Related]
4. Extracorporeal membrane oxygenation and V/Q ratios: an ex vivo analysis of CO Zakhary B; Sheldrake J; Pellegrino V Perfusion; 2020 May; 35(1_suppl):29-33. PubMed ID: 32397880 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of two pediatric polymethyl pentene membrane oxygenators with pulsatile and non-pulsatile perfusion. Qiu F; Khan S; Talor J; Kunselman A; Undar A Perfusion; 2011 May; 26(3):229-37. PubMed ID: 21247985 [TBL] [Abstract][Full Text] [Related]
6. Comparing oxygen transfer performance between three membrane oxygenators: effect of temperature changes during cardiopulmonary bypass. Jegger D; Tevaearai HT; Mallabiabarrena I; Horisberger J; Seigneul I; von Segesser LK Artif Organs; 2007 Apr; 31(4):290-300. PubMed ID: 17437498 [TBL] [Abstract][Full Text] [Related]
7. A wet-primed extracorporeal membrane oxygenation circuit with hollow-fiber membrane oxygenator maintains adequate function for use during cardiopulmonary resuscitation after 2 weeks on standby. Karimova A; Robertson A; Cross N; Smith L; O'callaghan M; Tuleu C; Long P; Beeton A; Han J; Ridout D; Goldman A; Brown K Crit Care Med; 2005 Jul; 33(7):1572-6. PubMed ID: 16003064 [TBL] [Abstract][Full Text] [Related]
8. Extracorporeal life support systems: alternative vs. conventional circuits. Khan S; Vasavada R; Qiu F; Kunselman A; Undar A Perfusion; 2011 May; 26(3):191-8. PubMed ID: 21227982 [TBL] [Abstract][Full Text] [Related]
9. Efficiency of gas transfer in venovenous extracorporeal membrane oxygenation: analysis of 317 cases with four different ECMO systems. Lehle K; Philipp A; Hiller KA; Zeman F; Buchwald D; Schmid C; Dornia C; Lunz D; Müller T; Lubnow M Intensive Care Med; 2014 Dec; 40(12):1870-7. PubMed ID: 25323118 [TBL] [Abstract][Full Text] [Related]
11. Hemostatic Changes During Extracorporeal Membrane Oxygenation: A Prospective Randomized Clinical Trial Comparing Three Different Extracorporeal Membrane Oxygenation Systems. Malfertheiner MV; Philipp A; Lubnow M; Zeman F; Enger TB; Bein T; Lunz D; Schmid C; Müller T; Lehle K Crit Care Med; 2016 Apr; 44(4):747-54. PubMed ID: 26646464 [TBL] [Abstract][Full Text] [Related]
12. Novel pulsatile diagonal pump for pediatric extracorporeal life support system. Wang S; Kunselman AR; Ündar A Artif Organs; 2013 Jan; 37(1):37-47. PubMed ID: 23305572 [TBL] [Abstract][Full Text] [Related]
13. DIDECMO: a new polymethylpentene oxygenator for pediatric extracorporeal membrane oxygenation. Agati S; Ciccarello G; Fachile N; Scappatura RM; Grasso D; Salvo D; Undar A; Mignosa C ASAIO J; 2006; 52(5):509-12. PubMed ID: 16966847 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of oxygenator dysfunction in polymethylpentene oxygenators: A pilot study. Modi SP; D'Aloiso B; Palmer A; Smith S; Arlia P; Anselmi M; Sanchez P; Ramanan R Perfusion; 2024 Aug; ():2676591241268402. PubMed ID: 39089248 [TBL] [Abstract][Full Text] [Related]
15. Cost-effective usage of membrane oxygenators in extracorporeal membrane oxygenation in infants. Özyüksel A; Ersoy C; Akçevin A; Türkoğlu H; Çiçek AE; Kahraman A; Kayhan B; Cantürk E Perfusion; 2015 Apr; 30(3):239-42. PubMed ID: 24965913 [TBL] [Abstract][Full Text] [Related]
16. Comparison of perfusion quality in hollow-fiber membrane oxygenators for neonatal extracorporeal life support. Talor J; Yee S; Rider A; Kunselman AR; Guan Y; Undar A Artif Organs; 2010 Apr; 34(4):E110-6. PubMed ID: 20420601 [TBL] [Abstract][Full Text] [Related]
17. Comparison of pumps and oxygenators with pulsatile and nonpulsatile modes in an infant cardiopulmonary bypass model. Haines NM; Wang S; Kunselman A; Myers JL; Undar A Artif Organs; 2009 Nov; 33(11):993-1001. PubMed ID: 20021473 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients. Qiu F; Guan Y; Su X; Kunselman A; Undar A Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035 [TBL] [Abstract][Full Text] [Related]
19. Oxygenator Impact on Ceftolozane and Tazobactam in Extracorporeal Membrane Oxygenation Circuits. Cies JJ; Moore WS; Giliam N; Low T; Enache A; Chopra A Pediatr Crit Care Med; 2020 Mar; 21(3):276-282. PubMed ID: 31688715 [TBL] [Abstract][Full Text] [Related]