BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 22918959)

  • 1. Inherited effects of low-dose exposure to methylmercury in neural stem cells.
    Bose R; Onishchenko N; Edoff K; Janson Lang AM; Ceccatelli S
    Toxicol Sci; 2012 Dec; 130(2):383-90. PubMed ID: 22918959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-lasting neurotoxic effects of exposure to methylmercury during development.
    Ceccatelli S; Bose R; Edoff K; Onishchenko N; Spulber S
    J Intern Med; 2013 May; 273(5):490-7. PubMed ID: 23600401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High susceptibility of neural stem cells to methylmercury toxicity: effects on cell survival and neuronal differentiation.
    Tamm C; Duckworth J; Hermanson O; Ceccatelli S
    J Neurochem; 2006 Apr; 97(1):69-78. PubMed ID: 16524380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chemokine CCL2 protects against methylmercury neurotoxicity.
    Godefroy D; Gosselin RD; Yasutake A; Fujimura M; Combadière C; Maury-Brachet R; Laclau M; Rakwal R; Melik-Parsadaniantz S; Bourdineaud JP; Rostène W
    Toxicol Sci; 2012 Jan; 125(1):209-18. PubMed ID: 21976372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats.
    Fujimura M; Usuki F
    Toxicol Appl Pharmacol; 2015 Oct; 288(1):19-25. PubMed ID: 26184774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of low level of methylmercury on proliferation of cortical progenitor cells.
    Xu M; Yan C; Tian Y; Yuan X; Shen X
    Brain Res; 2010 Nov; 1359():272-80. PubMed ID: 20813099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotoxicological mechanism of methylmercury induced by low-dose and long-term exposure in mice: oxidative stress and down-regulated Na+/K(+)-ATPase involved.
    Huang CF; Hsu CJ; Liu SH; Lin-Shiau SY
    Toxicol Lett; 2008 Feb; 176(3):188-97. PubMed ID: 18191348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylmercury interaction with lymphocyte cholinergic muscarinic receptors in developing rats.
    Coccini T; Randine G; Castoldi AF; Acerbi D; Manzo L
    Environ Res; 2007 Feb; 103(2):229-37. PubMed ID: 16808911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of the cell cycle regulatory gene p21 (Waf1, Cip1) following methylmercury exposure in vitro and in vivo.
    Ou YC; Thompson SA; Ponce RA; Schroeder J; Kavanagh TJ; Faustman EM
    Toxicol Appl Pharmacol; 1999 Jun; 157(3):203-12. PubMed ID: 10373404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury.
    Onishchenko N; Karpova N; Sabri F; Castrén E; Ceccatelli S
    J Neurochem; 2008 Aug; 106(3):1378-87. PubMed ID: 18485098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MeHg Suppressed Neuronal Potency of Hippocampal NSCs Contributing to the Puberal Spatial Memory Deficits.
    Tian J; Luo Y; Chen W; Yang S; Wang H; Cui J; Lu Z; Lin Y; Bi Y
    Biol Trace Elem Res; 2016 Aug; 172(2):424-436. PubMed ID: 26743863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural stem cell apoptosis after low-methylmercury exposures in postnatal hippocampus produce persistent cell loss and adolescent memory deficits.
    Sokolowski K; Obiorah M; Robinson K; McCandlish E; Buckley B; DiCicco-Bloom E
    Dev Neurobiol; 2013 Dec; 73(12):936-49. PubMed ID: 23959606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-dioxin-like polychlorinated biphenyls interfere with neuronal differentiation of embryonic neural stem cells.
    Tofighi R; Wan Ibrahim WN; Rebellato P; Andersson PL; Uhlén P; Ceccatelli S
    Toxicol Sci; 2011 Nov; 124(1):192-201. PubMed ID: 21908764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of growth arrest and DNA damage-inducible genes Gadd45 and Gadd153 in primary rodent embryonic cells following exposure to methylmercury.
    Ou YC; Thompson SA; Kirchner SC; Kavanagh TJ; Faustman EM
    Toxicol Appl Pharmacol; 1997 Nov; 147(1):31-8. PubMed ID: 9356304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylmercury induces neuropathological changes with tau hyperphosphorylation mainly through the activation of the c-jun-N-terminal kinase pathway in the cerebral cortex, but not in the hippocampus of the mouse brain.
    Fujimura M; Usuki F; Sawada M; Takashima A
    Neurotoxicology; 2009 Nov; 30(6):1000-7. PubMed ID: 19666049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective effects of MK-801 on methylmercury-induced neuronal injury in rat cerebral cortex: involvement of oxidative stress and glutamate metabolism dysfunction.
    Xu B; Xu ZF; Deng Y; Liu W; Yang HB; Wei YG
    Toxicology; 2012 Oct; 300(3):112-20. PubMed ID: 22722016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylmercury-induced alterations in astrocyte functions are attenuated by ebselen.
    Yin Z; Lee E; Ni M; Jiang H; Milatovic D; Rongzhu L; Farina M; Rocha JB; Aschner M
    Neurotoxicology; 2011 Jun; 32(3):291-9. PubMed ID: 21300091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebellum cholinergic muscarinic receptor (subtype-2 and -3) and cytoarchitecture after developmental exposure to methylmercury: an immunohistochemical study in rat.
    Roda E; Coccini T; Acerbi D; Castoldi A; Bernocchi G; Manzo L
    J Chem Neuroanat; 2008 May; 35(3):285-94. PubMed ID: 18358697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation of methylmercury or polychlorinated biphenyls in in vitro models of rat neuronal tissue.
    Meacham CA; Freudenrich TM; Anderson WL; Sui L; Lyons-Darden T; Barone S; Gilbert ME; Mundy WR; Shafer TJ
    Toxicol Appl Pharmacol; 2005 Jun; 205(2):177-87. PubMed ID: 15893545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylmercury causes epigenetic suppression of the tyrosine hydroxylase gene in an in vitro neuronal differentiation model.
    Go S; Kurita H; Matsumoto K; Hatano M; Inden M; Hozumi I
    Biochem Biophys Res Commun; 2018 Aug; 502(4):435-441. PubMed ID: 29856999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.