These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2291900)

  • 1. A vector-sum process produces curved aiming paths under rotated visual-motor mappings.
    Cunningham HA; Vardi I
    Biol Cybern; 1990; 64(2):117-28. PubMed ID: 2291900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aiming error under transformed spatial mappings suggests a structure for visual-motor maps.
    Cunningham HA
    J Exp Psychol Hum Percept Perform; 1989 Aug; 15(3):493-506. PubMed ID: 2527958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two dimensional field theory for motion computation. First order approximation; translatory motion of rigid patterns.
    Reichardt WE; Schlögl RW
    Biol Cybern; 1988; 60(1):23-35. PubMed ID: 3214650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction of eye movements and retinal signals during the perception of 3-D motion direction.
    Harris JM
    J Vis; 2006 Jul; 6(8):777-90. PubMed ID: 16895458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual-vestibular estimation of the body's curvilinear motion through the world: A computational model.
    Perrone JA
    J Vis; 2018 Apr; 18(4):1. PubMed ID: 29614151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contribution of otoliths and semicircular canals to the perception of two-dimensional passive whole-body motion in humans.
    Ivanenko YP; Grasso R; Israël I; Berthoz A
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):223-33. PubMed ID: 9234209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space.
    Fisk JD; Goodale MA
    Exp Brain Res; 1985; 60(1):159-78. PubMed ID: 4043274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Azimuth errors in pointing to remembered targets under extreme head rotations.
    Fookson O; Smetanin B; Berkinblit M; Adamovich S; Feldman G; Poizner H
    Neuroreport; 1994 Apr; 5(8):885-8. PubMed ID: 8061288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal Filter for Visual Motion Integration from Pursuit Eye Movements in Humans and Monkeys.
    Mukherjee T; Liu B; Simoncini C; Osborne LC
    J Neurosci; 2017 Feb; 37(6):1394-1412. PubMed ID: 28003348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human updating of visual motion direction during head rotations.
    Ruiz-Ruiz M; Martinez-Trujillo JC
    J Neurophysiol; 2008 May; 99(5):2558-76. PubMed ID: 18337365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplitude and direction errors in kinesthetic pointing.
    Baud-Bovy G; Viviani P
    Exp Brain Res; 2004 Jul; 157(2):197-214. PubMed ID: 15045500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurons in the supplementary eye field of rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system.
    Russo GS; Bruce CJ
    J Neurophysiol; 1996 Aug; 76(2):825-48. PubMed ID: 8871203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive channels computing action distance and direction.
    Bhat RB; Sanes JN
    J Neurosci; 1998 Sep; 18(18):7566-80. PubMed ID: 9736674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive spatial-motor processes. 1. The making of movements at various angles from a stimulus direction.
    Georgopoulos AP; Massey JT
    Exp Brain Res; 1987; 65(2):361-70. PubMed ID: 3556464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation and recognition of the movements of shapes.
    Marr D; Vaina L
    Proc R Soc Lond B Biol Sci; 1982 Mar; 214(1197):501-24. PubMed ID: 6127693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive elements in ocular interception and tracking of a moving target by untrained cats.
    Klam F; Petit J; Grantyn A; Berthoz A
    Exp Brain Res; 2001 Jul; 139(2):233-47. PubMed ID: 11497066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topographic and directional organization of visual motion inputs for the initiation of horizontal and vertical smooth-pursuit eye movements in monkeys.
    Lisberger SG; Pavelko TA
    J Neurophysiol; 1989 Jan; 61(1):173-85. PubMed ID: 2918342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Affine differential geometry and smoothness maximization as tools for identifying geometric movement primitives.
    Polyakov F
    Biol Cybern; 2017 Feb; 111(1):5-24. PubMed ID: 27822891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual contributions to human self-motion perception during horizontal body rotation.
    Mergner T; Schweigart G; Müller M; Hlavacka F; Becker W
    Arch Ital Biol; 2000 Apr; 138(2):139-66. PubMed ID: 10782255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaching during virtual rotation: context specific compensations for expected coriolis forces.
    Cohn JV; DiZio P; Lackner JR
    J Neurophysiol; 2000 Jun; 83(6):3230-40. PubMed ID: 10848543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.