These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 2291904)

  • 1. Anti-Hebbian learning in a non-linear neural network.
    Carlson A
    Biol Cybern; 1990; 64(2):171-6. PubMed ID: 2291904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forming sparse representations by local anti-Hebbian learning.
    Földiák P
    Biol Cybern; 1990; 64(2):165-70. PubMed ID: 2291903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hebbian errors in learning: an analysis using the Oja model.
    Rădulescu A; Cox K; Adams P
    J Theor Biol; 2009 Jun; 258(4):489-501. PubMed ID: 19248792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hebbian learning from higher-order correlations requires crosstalk minimization.
    Cox KJ; Adams PR
    Biol Cybern; 2014 Aug; 108(4):405-22. PubMed ID: 24862556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control.
    Schweighofer N; Doya K; Lay F
    Neuroscience; 2001; 103(1):35-50. PubMed ID: 11311786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplicative gain modulation arises through unsupervised learning in a predictive coding model of cortical function.
    De Meyer K; Spratling MW
    Neural Comput; 2011 Jun; 23(6):1536-67. PubMed ID: 21395434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of feature detectors by self-organization. A network model.
    Rubner J; Schulten K
    Biol Cybern; 1990; 62(3):193-9. PubMed ID: 2302428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hebbian learning reconsidered: representation of static and dynamic objects in associative neural nets.
    Herz A; Sulzer B; Kühn R; van Hemmen JL
    Biol Cybern; 1989; 60(6):457-67. PubMed ID: 11455966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Hebbian/Anti-Hebbian Neural Network for Linear Subspace Learning: A Derivation from Multidimensional Scaling of Streaming Data.
    Pehlevan C; Hu T; Chklovskii DB
    Neural Comput; 2015 Jul; 27(7):1461-95. PubMed ID: 25973548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neural network model for kindling of focal epilepsy: basic mechanism.
    Mehta MR; Dasgupta C; Ullal GR
    Biol Cybern; 1993; 68(4):335-40. PubMed ID: 8476976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of orientation selective simple cells simulated in deterministic and stochastic neural networks.
    Stetter M; Lang EW; Müller A
    Biol Cybern; 1993; 68(5):465-76. PubMed ID: 8476987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
    Burbank KS
    PLoS Comput Biol; 2015 Dec; 11(12):e1004566. PubMed ID: 26633645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition.
    Bill J; Buesing L; Habenschuss S; Nessler B; Maass W; Legenstein R
    PLoS One; 2015; 10(8):e0134356. PubMed ID: 26284370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An n-level field theory of biological neural networks.
    Chauvet GA
    J Math Biol; 1993; 31(8):771-95. PubMed ID: 8263424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why Do Similarity Matching Objectives Lead to Hebbian/Anti-Hebbian Networks?
    Pehlevan C; Sengupta AM; Chklovskii DB
    Neural Comput; 2018 Jan; 30(1):84-124. PubMed ID: 28957017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain localization for arbitrary stimulus categories: a simple account based on Hebbian learning.
    Polk TA; Farah MJ
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12370-3. PubMed ID: 8618903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning only when necessary: better memories of correlated patterns in networks with bounded synapses.
    Senn W; Fusi S
    Neural Comput; 2005 Oct; 17(10):2106-38. PubMed ID: 16105220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network.
    Bush D; Philippides A; Husbands P; O'Shea M
    Neural Comput; 2010 Aug; 22(8):2059-85. PubMed ID: 20438333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A columnar model of somatosensory reorganizational plasticity based on Hebbian and non-Hebbian learning rules.
    Joublin F; Spengler F; Wacquant S; Dinse HR
    Biol Cybern; 1996 Mar; 74(3):275-86. PubMed ID: 8867473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.