These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Photochemical conversion of the O-intermediate to 9-cis-retinal-containing products in bacteriorhodopsin films. Popp A; Wolperdinger M; Hampp N; Brüchle C; Oesterhelt D Biophys J; 1993 Oct; 65(4):1449-59. PubMed ID: 8274639 [TBL] [Abstract][Full Text] [Related]
6. Thermal equilibration between the M and N intermediates in the photocycle of bacteriorhodopsin. Druckmann S; Heyn MP; Lanyi JK; Ottolenghi M; Zimanyi L Biophys J; 1993 Sep; 65(3):1231-4. PubMed ID: 8241403 [TBL] [Abstract][Full Text] [Related]
7. Time-resolved absorption and photothermal measurements with recombinant sensory rhodopsin II from Natronobacterium pharaonis. Losi A; Wegener AA; Engelhard M; Gärtner W; Braslavsky SE Biophys J; 1999 Dec; 77(6):3277-86. PubMed ID: 10585949 [TBL] [Abstract][Full Text] [Related]
8. Effective light-induced hydroxylamine reactions occur with C13 = C14 nonisomerizable bacteriorhodopsin pigments. Rousso I; Gat Y; Lewis A; Sheves M; Ottolenghi M Biophys J; 1998 Jul; 75(1):413-7. PubMed ID: 9649399 [TBL] [Abstract][Full Text] [Related]
9. Two-photon absorption of bacteriorhodopsin: formation of a red-shifted thermally stable photoproduct F620. Fischer T; Hampp NA Biophys J; 2005 Aug; 89(2):1175-82. PubMed ID: 15894635 [TBL] [Abstract][Full Text] [Related]
10. The pH-dependence of photochemical intermediates of O and P in bacteriorhodopsin by continuous light. Wang L; Shen Z; Wang J; Li B; Chen F; Yang W; Feng X Biochem Biophys Res Commun; 2006 May; 343(3):899-903. PubMed ID: 16564498 [TBL] [Abstract][Full Text] [Related]
11. Energy storage in the primary step of the photocycle of bacteriorhodopsin. Birge RR; Cooper TM Biophys J; 1983 Apr; 42(1):61-9. PubMed ID: 6838982 [TBL] [Abstract][Full Text] [Related]
12. [Light-induced changes in quantum yields of the photochemical cycle of conversion of bacteriorhodopsin and transmembrane proton transfer in cells of Halobacterium halobium]. Dubrovskiĭ VT; Balashov SP; Sineshchekov OA; Chekulaeva LN; Litvin FF Biokhimiia; 1982 Jul; 47(7):1230-40. PubMed ID: 7115823 [TBL] [Abstract][Full Text] [Related]
14. Reversible inhibition of proton release activity and the anesthetic-induced acid-base equilibrium between the 480 and 570 nm forms of bacteriorhodopsin. Boucher F; Taneva SG; Elouatik S; Déry M; Messaoudi S; Harvey-Girard E; Beaudoin N Biophys J; 1996 Feb; 70(2):948-61. PubMed ID: 8789112 [TBL] [Abstract][Full Text] [Related]
15. The quantum efficiency of the bacteriorhodopsin photocycle. Goldschmidt CR; Kalisky O; Rosenfeld T; Ottolenghi M Biophys J; 1977 Feb; 17(2):179-83. PubMed ID: 836935 [TBL] [Abstract][Full Text] [Related]
16. Chromophore reorientations in the early photolysis intermediates of bacteriorhodopsin. Esquerra RM; Che D; Shapiro DB; Lewis JW; Bogomolni RA; Fukushima J; Kliger DS Biophys J; 1996 Feb; 70(2):962-70. PubMed ID: 8789113 [TBL] [Abstract][Full Text] [Related]
18. Quantum efficiency of the photochemical cycle of bacteriorhodopsin. Govindjee R; Balashov SP; Ebrey TG Biophys J; 1990 Sep; 58(3):597-608. PubMed ID: 19431766 [TBL] [Abstract][Full Text] [Related]
19. Met-145 is a key residue in the dark adaptation of bacteriorhodopsin homologs. Ihara K; Amemiya T; Miyashita Y; Mukohata Y Biophys J; 1994 Sep; 67(3):1187-91. PubMed ID: 7811932 [TBL] [Abstract][Full Text] [Related]
20. Dimeric-like kinetic cooperativity of the bacteriorhodopsin molecules in purple membranes. Tokaji Z Biophys J; 1993 Sep; 65(3):1130-4. PubMed ID: 8241392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]